ارائه ساختاری جدید از ترانزیستورهای اثرمیدان در مقیاس نانو به‌منظور بالابردن قابلیت اطمینان

نویسندگان

دانشکده فنی و مهندسی - دانشگاه دامغان

چکیده

ترانزیستورهای ماسفت با تکنولوژی سیلیسیم روی عایق کاربرد وسیعی در صنعت الکترونیک دارند. اما وجود لایه عایق در این ساختارها باعث مشکلاتی مانند اثر بدنه شناور و اثر خودگرمایی می‌گردند. به‌منظور بالابردن عملکرد الکتریکی، در این مقاله یک ترانزیستور ماسفت سیلیسیم روی عایق در مقیاس نانو ارائه می‌گردد. ساختار پیشنهادی با نام QSZ-MOSFET ارائه می‌گردد که در آن چهار ناحیه سیلیسیمی در کانال و در اکسید مدفون در نظر گرفته می‌شوند. نواحی نوع N در کانال یک ناحیه تخلیه ایجاد می‌کنند که قابلیت جریان‌دهی ترانزیستور را افزایش می‌دهند. علاوه بر این، اکثر حفره‌های ایجادشده توسط اثر بدنه شناور، توسط این نواحی تخلیه می‌گردند. نواحی نوع P در اکسید مدفون کمک به کاهش دمای شبکه می‌کنند و راهی برای عبور گرما از قسمت فعال ترانزیستور به زیرلایه ایجاد می‌کنند. عملکرد ساختار پیشنهادی و ساختار ماسفت مرسوم توسط نرم‌افزار ATLAS شبیه‌سازی می‌شوند و نشان داده می‌شود که ترانزیستور پیشنهادی دارای عملکرد بهتری نسبت به ساختار متداول از نظر قابلیت جریان‌دهی، ماکزیمم دمای الکترون در کانال، میدان الکتریکی، جریان حالت خاموش، دمای شبکه و قابلیت تحرک الکترون می‌باشد. در کنار مزایای ذکرشده، جایگزینی بخشی از اکسید مدفون با سیلیسیم موجب افزایش خازن پارازیتی می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

A Novel Nano MOSFET for Increasing the Device Reliability

نویسندگان [English]

  • M. Mehrad
  • M. Zareiee
School of Engineering, Damghan University, Damghan, Iran
چکیده [English]

In this paper, a novel nano MOSFET is presented to enhance the electrical performance of the device. The name of the new structure is QSZ-MOSFET which includes 4 silicon zones in the channel and buried oxide. The N type silicon zones in the channel create the depletion regions that increase the current capability of the device. Moreover, the majority of the created holes by the floating body effect are absorbed by these zones. The P silicon zones in the buried oxide have more conductivity than oxide and help to reduce the lattice temperature and make a path for passing the heat from the active region of the transistor to the substrate. The proposed and conventional structures performances are simulated by ATLAS simulator which shows the advantages of the proposes structure.

کلیدواژه‌ها [English]

  • Metal oxide semiconductor field effect transistor (MOSFET)
  • silicon on insulator technology (SOI)
  • floating body effect
  • lattice temperature
  • electric field
[1] J. P. Colinge, Silicon-on-insulator technology: materials to VLSI, 3rd ed., Kluwer Academic Publishers, 2004.
[2] J. Baek, J. Kim, S. G. Kim, J. K. Moon, Y. H. Lee, “A novel technique for fabricating trench MOSFET employing oxide spacers and self-align techniques,” Materials Science and Engineering: B, vol. 97, pp. 123-128, 2003.
[3] M. Yoshimi, H. Hazama, M. Takahashi, S. Kambayashi, T. Wada, K. Kato, et al., “Two-dimensional simulation and measurement of high-performance MOSFETs made on a very thin SOI film,” IEEE Transaction on Electron Devices, vol. 36, pp. 493-503, 1989.
[4] M. Saremi, A. A. Kusha, S. Mohammadi, “Ground plane fin-shaped field effect transistor (GP-FinFET): a FinFET for low leakage power circuits,” Microelectronic Engineering, Vol. 95, pp. 74-82, 2012.
[5] M. Saremi, B. Ebrahimi, A. A. Kusha, “Process variation study of Ground Plane SOI MOSFET,” 2nd Asia Symposium on Quality Electronic Design (ASQED), pp. 66-69, 2010.
[6] حامد نجفعلی زاده و علی اصغر اروجی، «طراحی ساختاری از ترانزیستور ماسفت دو گیتی با به کارگیری دو ماده، اکسید هافنیم (HfO2) و سیلیسیم-ژرمانیوم  (SiGe) در کانالی از جنس سیلیسیم (DG-DM)،» مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 299-304، 1396.
[7] S. Cristoloveanu, S. Li, “Electrical characterization of silicon-on-insulator materials and devices,” Springer, 1995.
[8] S. Deb, N. B. Singh, N. Islam, S. K. Sarkar, “Work function engineering with linearly graded binary metal alloy gate electrode for short-channel SOI MOSFET,” IEEE Transactions on Nanotechnology, vol. 11, pp. 472-478, 2012.
[9] B. Manna, S. Sarkhel, N. Islam, S. Sarkar, S. K. Sarkar, “Spatial composition grading of binary metal alloy gate electrode for short-channel SOI/SON MOSFET application,” IEEE Transactions on Electron Devices, vol. 59, pp. 3280-3287, 2012.
[10] Q. Xie, C. J. Lee, J. Xu, C. Wann, J. Y. C. Sun, Y. Taur, “Comprehensive analysis of short-channel effects in ultrathin SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 60, pp. 1814-1819, 2013.
[11] S. Selberherr, Analysis and simulation of semiconductor devices, Springer-Verlag, Wien-New York, 1984.
[12] علی اصغر اروجی، زینب رمضانی و عاطفه رحیمی فر، «ترانزیستور اثر میدان فلز-نیمه‌هادی در تکنولوژی سیلیسیم روی عایق با استفاده از یک تکه اکسید اضافی در کانال برای کاربردهای توان و فرکانس بالا،» مجله مهندسی برق دانشگاه تبریز، جلد  46، شماره 4، صفحات 1-6، 1395.
[13] S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid State Electronics, vol. 45, pp. 1403-1411, 2001.
[14] Ali A. Orouji, S. E. Jamali Mahabadi, P. Keshavarzi, A novel partial SOI LDMOSFET with a trench and buried P layer for breakdown voltage improvement, Superlattices and Microstructures, vol. 50, pp. 449-460, 2011.
[15] M. Mehrad, “Controlling floating body effect in high temperatures: L-shape SiGe region in nano-scale MOSFET,” Superlattices and Microstructures, vol. 85, pp. 573-580, 2015.
[16] A. Orouji, S. Heydari, M. Fathipour, “Double step buried oxide (DSBO) soi-mosfet: a proposed structure for improving self-heating effects,” Physica E, vol. 41, pp. 1665-1668, 2009.
[17] X. Luo, T. F. Lei, Y. G. Wang, G. L. Yao, Y. H. Jiang, K. Zhou, ... , R. Ge, “Low on-resistance SOI dual-trench-gate MOSFET,” IEEE Transactions on Electron Devices, vol. 59, pp. 504-509, 2012.
[18] Ohata, Y. Bae, C. Fenouillet-Beranger, S. Cristoloveanu, “Mobility enhancement by back-gate biasing in ultrathin SOI MOSFETs with thin BOX,” IEEE Electron Device Letters, vol. 33, pp. 348-350, 2012.
[19] J. Luo, J. Chen, Q. Wu, Z. Chai, J. Zhou, T. Yu, ... , X. Wang, “A tunnel diode body contact structure for high-performance SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 59, pp. 101-107, 2012.
[20] Z. Qiuming, L. Qi, T. Ning, L. Yongchang, “A high-voltage SOI MOSFET with a compensation layer on the trenched buried oxide layer,” Journal of Semiconductors, vol. 34, 2013.
[21] H. Jeon, B. H. Lee, B. C. Jang, S. Y. Choi, Y. K. Choi, “Experimental study on quantum mechanical effect for insensitivity of threshold voltage against temperature variation in strained SOI MOSFETs,” In SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2015.
[22] W. Chen, R. Cheng, D. W. Wang, H. Song, X. Wang, H. Chen, ... , Y. Zhao, “Electrothermal Effects on Hot-Carrier Reliability in SOI MOSFETs—AC Versus Circuit-Speed Random Stress,” IEEE Transactions on Electron Devices, vol. 63, pp. 3669-3676, 2016.
[23] Device simulator ATLAS, Silvaco International; 2007.
[24] A. Orouji, M. K. Anvarifard, “SOI MOSFET with an insulator region (IR-SOI): A novel device for reliable nanoscale CMOS circuits,” Materials Science and Engineering B, vol. 178, pp. 431-437, 2013.
[25] M. K. Anvarifard, Ali A. Orouji, “Improvement of self-heating effect in a novel nanoscale SOI MOSFET with undoped region: a comprehensive investigation on DC and AC operations,” Superlattices and Microstructures, vol. 60, pp. 561-579, 2013.
[26] A. Orouji, M. K. Anvarifard, “Novel reduced body charge technique in reliable nanoscale SOI MOSFETs for suppressing the kink effect,” Superlattices and Microstructures, vol. 72, pp. 111-125, 2014.
[27] J. Chen, L. Jiexin, W. Qingqing, C. Zhan, H. Xiaolu, W. Xing, W. Xi, “Extra source implantation for suppression floating-body effect in partially depleted SOI MOSFETs,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 272, pp. 128-131, 2012.
[28] A. Orouji, A. Abbasi, “Novel partially depleted SOI MOSFET for suppression floating-body effect: An embedded JFET structure,” Superlattices and Microstructures, Vol. 52, no. 3, pp. 552-559, 2012.
[29] Der, P. Ghedini, J. A. Martino, E. Simoen, C. Claeys, “Impact of the twin-gate structure on the linear kink effect in PD SOI nMOSFETS,” Microelectronics journal, Vol. 37, no. 8, pp. 681-685, 2006.