ارائه یک الگوریتم جدید بر اساس مدل‌های پارامتری سیگنال به‌منظور تخمین طیف سیگنال نویزی غیرگوسی

نویسندگان

1 تهران - دانشگاه علوم و فنون هوایی شهید ستاری - دانشکده مهندسی برق

2 دانشگاه شیراز - دانشکده مهندسی برق و کامپیوتر

چکیده

در این مقاله یک روش جدید برای تخمین طیف سیگنال در حضور نویز اندازه‌گیری ارائه‌شده است. نویز زمینه دارای توزیع غیرگوسی آلفا-پایدار متقارن است. پارامترهای سیگنال از طریق روش‌های طیفی به‌صورت مدل خود کاهنده (AR) مدل شده است. پس از محاسبه میزان بایاس ایجادشده در پارامترهای سیگنال، به حذف آن با استفاده از معادلات یول واکر تعمیم‌یافته پرداخته‌شده است. در توزیع آلفا-پایدار فرم بسته فرمولی برای توابع چگالی احتمال و توزیع تجمعی احتمال وجود ندارد. هم‌چنین نامحدود بودن مقدار واریانس در این توزیع، موجب ناکارآمدی در استفاده از ضرایب همبستگی و روش‌های معمول تخمین پارامتر شده است. با ارائه یک فرم بسته فرمولی جدید بر اساس ضرایب هم‌تغییر، حذف این بایاس در قالب یک الگوریتم تکرارشونده صورت گرفته است. نتایج حاصل از شبیه‌سازی الگوریتم پیشنهادی نشان می‌دهد که در نسبت‌های سیگنال به نویز dB 10 و بالاتر، بیش از 20 درصد بهبود دقت، در تخمین پارامترهای مدل AR نویزی نسبت به روش یول‌واکر ایجادشده است. همچنین نتایج نشان می‌دهد تخمین‌های حاصل از روش پیشنهادی نسبت به جابه‌جایی قطب‌های مدل بسیار مقاوم‌تر از روش یول‌واکر است و برای مدل‌های AR با قطب‌های نزدیک به مرزهای دایره واحد بهبود قابل‌توجهی نسبت به روش یول‌واکر مرتبه بالا نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Algorithm Based on Signal Parametric Models for Estimating the Spectral of Non-Gaussian Noisy Signal

نویسندگان [English]

  • M. Bayat 1
  • A. Kadivar 2
  • H. Radmanesh 1
1 Faculty of Electrical Engineering, Shahid Sattari Aeronautical university of Science & technology, Tehran, Iran
2 Faculty of Electrical and Computer Engineering, University of Shiraz, Shiraz, Iran
چکیده [English]

In This study a new method for spectral estimation of signals in the presence of observation noise is proposed. Back ground noise has a non-Gaussian symmetric alpha stable distribution. Signal parameters are modeled by an AR process, using spectral methods. After the calculation of the produced bias in signal parameters, the bias is removed using the generalized Yule–Walker equations. In alpha stable distribution, there is no closed form formula for probability distribution function and cumulative distribution function. Also, the infiniteness of variance in this distribution, limits the performance of correlation coefficient based methods and other standard parameter estimation methods. In this paper, a new closed form formula based on covariation coefficient is proposed which removes the bias using an iterative algorithm. The simulation results show that, by using the proposed method, there is a 20 percent improvement in estimation accuracy of signal parameters in 10dB SNRs and higher ones. Moreover, the results show the estimations of the proposed  method is more robust to displacement of  poles compared to the classic Yule-Walker method and displays a significant improvement in comparison with  the high-order Yule Walker method  for AR models,  whose  poles are close to the boundaries of the unit circle.

کلیدواژه‌ها [English]

  • Alpha-stable distribution
  • autoregressive model
  • Yule-Walker equations
[1] S. M. Kay, Modern spectral estimation: theory and application, Englewood Cliffs,1988.
[2] P. Stoica and R. L. Moses, Spectral analaysis of signals, Pearson/Prentice Hall, 2005.
[3] A. Amini, Th. Philippe, J. Paul Ward, and M. Unser, “On the linearity of Bayesian interpolators for non-Gaussian continuous-time AR (1) processes,” IEEE Transactions on Information Theory, vol. 59, no. 8, pp. 5063-5074, 2013.
[4] A. Wyłomańska and G. Janusz, “Stable continuous-time autoregressive process driven by stable subordinator,” Physica A: Statistical Mechanics and its Applications. Vol. 44, no.3, pp. 1012-1026, 2016.
[5] D. Gencaga, E. Kuruoglu, and A. Ertuzun, “Estimation of time-varying autoregressive symmetric alpha stable processes by particle filters,” Signal Processing Conference, 2005 13th European, IEEE, pp.1-4, 2005.
[6] مجتبی حاجی آبادی، عباس ابراهیمی مقدم و حسین خوش بین، «حذف نویز صوتی مبتنی بر یک الگوریتم وفقی نوین»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحه 139-146، 1395.
[7] احمد قلی زاده سوته، حسین خالقی بیزکی، « تخمین پارامترهای کد BCH باینری در شرایط نویزی با استفاده از روش مبتنی بر بیت‌های بررسی توازن»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحه 197-209، 1396.  
[8] M. Xiong, Zh. Daifeng, and J. Jinlong, “Improved Whitening Method of Linear AR Colored Noise in Stable Distribution Environments,” International Conference on Networks Security Wireless Communications and Trusted Computing, Vol. 1, pp. 1-3, 2009.
[9] M. Alexandr, “Parameter estimation in an autoregression model with infinite variance,” Innovative Computing Information and Control, 3rd International Conference on, IEEE, pp.586-586, 2008.
[10] W. X. Zheng, “A least-squares based method for autoregressive signals in the presence of noise,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 46, no.1, pp. 81-85, 1999.
[11] N. Balakrishna and G. Hareesh, “Stable Autoregressive Models and Signal Estimation,” Communications in Statistics-Theory and Methods, vol. 41, no. 11, pp. 1969-1988, 2012.
[12] E. Ollila, “Complex elliptically symmetric distributions: Survey, new results and applications,” Signal Processing, IEEE Transactions on, vol. 60, no. 11, pp. 5597-5625, 2012.
[13] Z. Hashemifard, H. Amindavar, and A. Amini, “Parameters estimation for continuous-time heavy-tailed signals modeled by α-stable autoregressive processes,” Digital Signal Processing, vol. 57, no. 2, pp. 79-92, 2016.
[14] Bibalan, M. Hassannejad, and H. Amindavar, “On parameter estimation of symmetric alpha-stable distribution,”  IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp.4328-4332, 2016.
[15] W. Chunyang, X. Liu, and B. Fan, “Estimation method for weak sinusoidal amplitude in alpha noise,” 12th IEEE International Conference on Signal Processing (ICSP), pp.46-51, 2014.
[16] T. Yong, X. Zhong, and L. Zhong, “Time-delay estimation based on fractional lower order statistics,” IEEE International Conference on Wireless Communication and Sensor Network (WCSN), pp. 50-55, 2014.
[17] M. Shao and Ch. L. Nikias, “Signal processing with fractional lower order moments: stable processes and their applications,” Journal of  Proceedings of the IEEE, vol. 81, no. 7, pp. 986-1010, 1993.
[18] C. M. Gallagher, “A method for fitting stable autoregressive models using the autocovariation function,” Statistics & probability letters, vol. 53, no. 4, pp. 381-390, 2001.
[19] G. Samoradnitsky and M. S.Taqqu, Stable non-Gaussian random processes:stochastic models with infinite variance, CRC Press, (1994).
[20] G. Akbarizadeh, “A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images,” IEEE Transactions on Geoscience and Remote Sensing. Vol. 50 , no. 11, pp. 4358-68,  2012.
[21] Z. Tirandaz, G. Akbarizadeh, “A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, no. 3, pp. 1244-64, 2016.
[22]  E. Jokar and H. Pourghassem, “Segmentation in Ultrasound Images Using Curvelet Transform and Shape Prior,” International Conference on Communication Systems and Network Technologies (CSNT),pp. 180-185, 2013.
[23] M. Testa, E. Magli, “Compressive estimation and imaging based on autoregressive models,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5077-87, 2016.
[24] G. Zhai, X. Wu, “Hybrid parametric-nonparametric modeling with application to natural image upsampling,” 18th IEEE International Conference on Image Processing (ICIP), pp. 1393-1396, 2011.