روش کنترل جدید برای مبدل منبع ولتاژ و ژنراتور سنکرون به‌منظور کنترل فرکانس در یک ریزشبکه

نویسندگان

1 دانشگاه آزاد اسلامی واحد نورآباد ممسنی - گروه برق

2 مرکز آموزش عالی اقلید فارس - دانشکده مهندسی - گروه مهندسی برق

3 دانشگاه صنعتی شیراز - دانشکده مهندسی برق و الکترونیک

چکیده

منابع تولید پراکنده که استفاده از آن‌ها روزبه‌روز در حال افزایش است بدون سیستم کنترل دقیق عملکرد مناسب و مؤثری نخواهند داشت. منابع تولید پراکنده در مقایسه با ژنراتور سنکرون به علت عدم داشتن اینرسی کافی، تأثیر کمتری در کنترل فرکانس شبکه دارند. منابع تولید پراکنده با استفاده از مبدل‌های الکترونیک قدرت به شبکه‌های فشار ضعیف متصل می‌گردند، به‌طوری‌که این مبدل‌ها در دو مد کنترل ولتاژ و توان کار می‌کنند. در این مقاله روش کنترل جدیدی به‌منظور بررسی نقش مشارکتی مبدل‌های منبع ولتاژ با ماشین سنکرون در کنترل فرکانس ریزشبکه ارائه می‌گردد. در این راستا ابتدا روش کنترل ترکیبی دروپ فرکانس-زاویه بهبودیافته همراه با کنترل‌کننده تطبیقی غیرخطی در مبدل‌ها به‌منظور کنترل توان و فرکانس ارائه می‌گردد. درنهایت، صحت عملکرد روش ارائه‌شده، با استفاده از شبیه‌سازی سیستم نمونه در نرم‌افزار سیمولینک متلب مورد ارزیابی و تأیید قرار می‌گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Novel control method of voltage source converter and synchronous generator to frequency control in a microgrid

نویسندگان [English]

  • A. Karimi 1
  • H. Fallahzadeh-Abarghouei 2
  • M. Nayeripour 3
1 Department Of Electrical, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
2 Department of Electrical Engineering, Faculty of Engineering, Higher Education Center of Eghlid, Eghlid, Fars, Iran
3 Faculty of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

Now days using of distributed generations (DG) are growing. Without considering appropriate controller, their operation is not useful and efficiency. DG has less impact on the network frequency than synchronous generator (SG) due to its low inertia compared to SG. DGs using power electronic converters are connected to low-voltage networks, so that converters work in voltage control mode and power control mode.In this paper, a new control method to investigate the role of participatory voltage source converters with synchronous machine to frequency control of the microgrid has been presented. In this regard, the cascaded frequency-angle loop control with adaptive nonlinear controller in order to power sharing and frequency control is used. In the following, new algorithm for evaluating the effects of VSCs with synchronous generator is presented. Finally, the accuracy and authenticity of the proposed method, using simulations used in software Simulink Matlab evaluated and approved.

کلیدواژه‌ها [English]

  • Participatory voltage source converter
  • cascaded droop frequency-angle
  • frequency control
[1] P. Kundur. "Power System Stability and Control"  McGraw-Hill, New York, 1994
[2] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78–94, Jul./Aug. 2007.
[3] F. Katiraei and M. R. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Transactions on Power Syst., vol. 21, no. 4, pp. 1821–1831, Nov. 2006.
[4] IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems, IEEE Std. 1547-2003.
[5] IEEE Guide for Monitoring, Information Exchange, and Control of Distributed Resources Interconnected With Electric Power Systems, IEEE 1547.3-2007, 2007.
[6] J. C. Vasquez, R. A. Mastromauro, J. M. Guerrero, and M. Liserre, “Voltage support provided by a droop-controlled multifunctional inverter,” IEEE Transactions on Ind. Elect., vol. 56, no. 11, pp. 4510–4519, Nov. 2009.
[7] E. Santacana, G. Rackliffe, L. Tang, and X. Feng, “Getting smart,” IEEE Power Energy Mag., vol. 8, no. 2, pp. 41–48, Mar./Apr. 2010.
[8] C. Yuen, A. Oudalov, and A. Timbus, “The provision of frequency control reserves from multiple microgrids,” IEEE Transactions on Ind. Elect., vol. 58, no. 1, pp. 173–183, Jan. 2011
[9] Yuan and Y. Zhang, “Status and opportunities of photovoltaic inverters in grid-tied and micro-grid systems,” in Proc. IEEE 5th Int. Power Electronics and Motion Control Conf., IPEMC 2006.
[10] Y. A.-R. I. Mohamed and E. F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids,” IEEE Transactions on Power Elect., vol. 23, no. 26, pp. 2806–2816, Nov. 2008.  
[11] A. Guerrero et al., “Distributed generation,” IEEE Ind. Elect. Mag., pp.52–64, Mar. 2010.
[12] J. M. Guerrero, L. Hang, and J. Oceda, “Control of distributed uninterruptable power supplies,” IEEE Transactions on Ind. Elect., vol. 50, no. 8, pp. 2845–2859, Aug. 2008.
[13] A. G. Tsikalakis and N. D. Hatziagrion, “Centralized control for optimizing microgrid operation,” IEEE Transactions on Energy Convers., vol. 23, no. 1, pp. 241–248, Mar. 2008.
[14] R. Majumder, “Power sharing and control in distributed generation with wireless sensor network,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 618–634, Jun. 2012.  
[15] I. Chung et al., “Control methods of inverter-interfaced distributed generators in a microgrid system,” IEEE Transactions on Ind. Appl.,pp.1078–1088,May/Jun.2010.
[16] J.-F. Chen and C.-L. Chu, “Combination voltage controlled and current controlled PWM inverters for UPS parallel operation,” IEEE Transactions on Power Elect., vol. 10, no. 5, pp. 547–558, Sep. 1995.
[17] S. Ahn et al., “Power-sharing method of multiple distributed generators considering modes and configurations of a microgrid,” IEEE Transactions on Power Del., vol. 25, no. 3, pp. 2007–2016, Jul. 2010.
[18] K. D. Brabandes et al., “A voltage and frequency droop control method for parallel inverters,” IEEE Transactions on Power Elect., vol. 22, no. 4, pp. 1107–1114, Jul. 2007.
[19] J. Guerrero, J. C. Vasquez, and L. G. D. Vicuna, “Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization,” IEEE Transactions on Ind. Elect., vol. 58, no. 1, pp. 158–166, Jan. 2011.
[20] E. Baklund et al., “Energy management in autonomous microgrids using stability-consternated droop control of inverter,” IEEE Transactions on Power Elect., vol. 23, no. 5, pp. 2346–2351, Sep. 2008.
[21] R. Majumder et al., “Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop,” IEEE Transactions on Power Syst., vol. 25, no. 2, pp. 796–808, May 2010
[22] J. Kim et al., “Mode adaptive droop control with virtual output impedances for an inverter-based flexible microgrid,” IEEE Transactions on Power Elect., vol. 26, no. 3, pp. 698–701, Mar. 2011.
[23] Mahdi Ashabani; Yasser A. -R. I. Mohamed; Mojtaba Mirsalim; Mohammad Aghashabani “Multivariable Droop Control of Synchronous Current Converters in Weak Grids/Microgrids With Decoupled dq-Axes Currents,” IEEE Transactions on Smart Grid., vol. 6, no. 4, pp. 1610–1620, Feb. 2015.
[24] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Angle droop versus frequency droop in a voltage source converter based autonomous microgrid,” in Proc. IEEE Power & Energy Society General Meeting, 2009.
[25] R. Majumder et al., “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Transactions on Power Del., vol. 25, no. 4, pp. 2768–2778, Oct. 2010.
[26] سیدعباس صارمی حصاری؛ محسن حمزه؛ احمد سالم‌نیا «بهبود عملکرد دینامیکی و استاتیکی سیستم تقسیم توان در ریزشبکه‌ها در حالت جزیره‌ای » مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، 1395.
[27] Dan Wu; Fen Tang; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Transactions on Energy Conversion,  vol. 24, Issue: 4,  pp. 882–889,2014.
[28] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. Int. Opt. Elect. Electron. Equipment Conf., pp. 1369–1380, 2010.
[29] J. Schonberger, R. Duke, and S. D. Round, “DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid,” IEEE Transactions on Ind. Electron., vol. 53, no. 5, pp. 1453–1460, Oct. 2006.
[30] D. Wu, J. M. Guerrero, J. C. Vasquez, T. Dragicevic, and F. Tang, “Coordinated power control strategy based on primary-frequency-signaling for islanded microgrids,” IEEE Energy Convers. Congress Expo, pp. 1033–1038, 2013.
[31] T. John, S. P. Lam, “Voltage and frequency control during microgrid islanding in a multi-area multi-microgrid system” IET Generation, Transmission & Distribution, vol. 11, No. 6, 1502 - 1512 May2017.
[32] X. Tang, X. Hu, N. Li, W. Deng, G. Zhang “A Novel Frequency and Voltage Control Method for Islanded Microgrid Based on Multienergy Storages” IEEE Transactions on smart grid,vol. 7, No. 1, 410 – 419, May2017
[33] I. J. Balaguer Q. Lei, S. Yang, U. Supatti, F. Zheng “Control for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation,” IEEE Transactions on Industrial Electronics Society,vol. 58, No. 1, 145 – 157, May2010
[34] رحمت الله هوشمند، حسین محکمی، امین خدابخشیان «کنترل اینورترهای متصل به شبکه در حضور سلف غیرخطی در فیلتر LCL خروجی» مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، 1394
[35] S. M. Ashabaniand, Y. A. I. Mohamed, “General Interface for Power Management of Micro-Grids Using Nonlinear Cooperative Droop Control,” IEEE Trans. power systems, vol. 28, No. 3, August 2013.
[36] Q. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,” IEEE Transactions on Ind. Elect., vol. 58, no. 4, pp. 1259–1267, Apr. 2011.
[37] P. Kundur. "Power System Stability and Control" McGraw-Hill, New York, 1994.