طراحی تقویت‌کننده توان دوبانده همزمان با سوئیچ فعال در 9/0/2/4 گیگاهرتز در پروسه 0.18μmRF CMOS

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه آزاد اسلامی واحد تبریز

چکیده

چکیده: در این مقاله، تقویت­‌کننده توان دوبانده با توان خروجی بالا در پروسه استاندارد 0.18μm CMOS  برای کدخوان RFID ارائه شده است. تقویت‌­کننده توان در دو باند فرکانسی GHz9/0 و GHz4/2 به‌طور همزمان کار می‌­کند. برای رسیدن به قابلیت خط­‌سانی و توان خروجی بالا از ترکیب کردن چندین تقویت‌­کننده کلاس AB استفاده شده است. تقویت‌­کننده توان پیشنهادی شامل چهار بخش پیش تقویت‌­کننده، تقویت‌کننده تـوان اصلی، ترکیب­‌کننده توان با استفاده از ترانسفورمر و مدار تطبیق خروجی است. سـاختار طبقات توان به‌­صورت تفاضلی و آبشاری به‌ دلیل مزیت‌­های این نوع ساختارها طراحی شده است. همچنین، در فیلترهای خروجی هر طبقه برای داشتن قابلیت دوبانده از فن سوئیچ‌­های فعال استفاده می­‌شود. برای تقویت‌­کننده طراحی‌­شده در فرکانس GHz9/0 مقدار توان خروجی، بهره توان و بازده PAE به­‌ ترتیب برابر با dBm30، 33 dB، 27% است. همچنین در فرکانس 2.4GHz مقدار توان خروجی، بهره توان و بازده PAE به ترتیب برابر با 28dbm، 28dB، 5/32%  است.

کلیدواژه‌ها


عنوان مقاله [English]

0.9/2.4 GHz Active Switch Concurrent Dual-Band Power Amplifier Design in 0.18 μmRF CMOS

چکیده [English]

Abstract:In this paper, a dual band power amplifier with high output power in a standard 0.18 μm CMOS process for RFID reader is presented. The PA can work in concurrent dual-band mode at 0.9 GHz and 2.4 GHz. To achieve linearity and high output power simultaneously, Several AB-Class amplifiers are combined. The proposed power amplifier consists of preamplifier, main power amplifier, power combiner based on transformer type and the output matching circuit. Power stage structures are chosen differential and cascode because of the advantages of these topologies. Also, the output filters are realized by active switch technique to be able work in a concurrent dual - band. The power amplifier has a 1dB compression point of 30 dBm and the power gain of 33 dB and power-added efficiency (PAE) of 27% at 0.9 GHz operating frequency. Also, the power amplifier has a 1dB compression point of 28 dBm and the power gain of 28 dB and power-added efficiency (PAE) of 32.5% at 0.9 GHz operating frequency.

کلیدواژه‌ها [English]

  • Keywords: Linear power amplifier
  • concurrent dual band
  • power combiner
  • linearity

 

[1] EPC™ Radio-Frequency Identity Protocol Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.0.9.
[2] W. I. Son, K. S. Oh, W. S. Lee, H. S. Tae, and J. W. Yu, “Dual-frequency antenna for HF/UHF handheld RFID reader,” Proc. IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals (IMWS-IRFPT), pp. 1-2, 2011.
[3] R. Caso, A. Michel, M. Rodriguez-Pino, and P. Nepa, “Dual-band UHF-RFID/WLAN circularly polarized antenna for portable RFID readers,”  IEEE Transactions on Antennas and Propagation, vol. 62 ,  no.5, pp. 2822-2826, 2014.
[4] Q. LiuJ. ShenH. Liu, and Y. Liu “Dual-band circularly-polarized unidirectional patch antenna for RFID reader applications,” IEEE Transactions on Antennas and Propagation, vol. 62 ,  no. 12,  pp. 6428- 6434, 2014.
[5] A. T. Mobashsher, and R. W. Aldhaheri, “An improved uniplanar front-directional antenna for dual-band RFID readers,” IEEE Antennas and Wireless Propagation Lettersvol. 11 , pp. 1438- 1441, 2012.
[6] آزاده ایمانی، جواد نوری‌نیا و چنگیز قبادی، « آنتن دایورسیتی مسطح جدید پهن‌باند جهت استفاده در ارتباطات سیار،» مجله مهندسی برق دانشگاه تبریز، دوره ، شماره 2، صفحه 13-19، 1389.
[8] M. S. Moussa, CMOS SOI Distributed Amplifiers for New Communication Systems, Ph.D. thesis, Universit´e Catholique de Louvain, 2006.
[11] T. Sowlati, and D. M. W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” IEEE Journal of Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, 2003.
[12] C. R. Battjes, “A wide-band high-voltage monolithic amplifier,” IEEE Journal of Solid-State Circuits, vol. 8, no. 6, pp. 408-413, 1973.
[13] J. G. McRory, G. G. Rabjohn, and R. H. Johnston, “Transformer coupled stacked FET power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 34, no. 2, pp. 157-161, 1999.
[14] E. Wilkinson, “An N-way hybrid power divider,” IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 1, pp. 116-118, 1960.
[15] C. Park, Y. Kim, H. Kim, and S. Hong, “A 1.9-GHz CMOS power amplifier using three-port asymmetric transmission line transformer for a polar transmitter,” IEEE Transaction on Microwave Theory and Techniques, vol. 55, no. 2, pp. 230-238, 2007.
[16] C. Park, D. H. Lee, J. Han, and S. Hong “Tournament-shaped magnetically coupled power-combiner architecture for RF CMOS power amplifier,” IEEE Transaction on Microwave Theory and Techniques, vol. 55, no. 10, 2007.
[17] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using distributed active-transformer architecture,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 371-383, 2002.
[18] K. H. An, Y. Kim, O. Lee, K. S. Yang, H. Kim, J. J. Chang, W. Woo, C. H. Lee, and J. Laskar, “A monolithic voltage boosting parallel-primary transformer structure for fully integrated CMOS power amplifier design,” Proc. IEEE RFIC Symposium, pp. 419-422, 2007.
[19] O. Lee, K. S. Yang, K. H. An, Y. Kim, H. Kim, J. J. Chang, W. Woo, C. H. Lee, and J. Laskar, “A 1.8-GHz 2-watt fully integrated CMOS push-pull parallel-combined power amplifier design,” Proc. IEEE RFIC Symposium, pp. 435-438, 2007.
[20] G. Liu, T. J. King, and A. M. Niknejad, “A 1.2 V, 2.4 GHz fully integrated linear power amplifier with efficiency enhancement,” Proc. IEEE Custom Integrated Circuits Conference (CICC 2006), pp. 141-144, 2006.
[21] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS process,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, 2008.
[23] Z. Zhu, X. Huang, and M. Caron “Theoretical and experimental studies of a probabilistic-based memoryless PA linearization technique,” Circuits, Systems, and Signal Processing, vol. 32, no. 6 , pp. 3031-3057, 2013.
[24] محسن کربعلی‌زاده، نویدرضا ابجدی، غلامرضا عرب مارکده و جعفر سلطانی، «کنترل تطبیقی با خطی‌سازی فیدبک ورودی-خروجی یک مبدل تشدیدی سری-موازی dc-dc،» مجله مهندسی برق دانشگاه تبریز، دوره 44، شماره 1، صفحه 33-42، 1393.
[25] N. Delaunay, M. Abid, B. Le Gal, D. Dallet, C. Rebai, N. Deltimple, D. Belot, and E. Kerherve “Mixed Cartesian feedback for Zero-IF WCDMA transmitter,” Analog Integrated Circuits and Signal Processing, vol. 73, no. 3, pp. 909-917, 2012.
[26] Y. W. Ding, and R. Harjani “A high-efficiency CMOS +22-dBm linear power amplifier,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, 2005.
[27] K. Bonkee, K. Jin-Su, and L. Kwyro, “A new linearization technique for MOSFET RF amplifier using multiple gated transistors,” IEEE Microwave and Guided Wave Letters, vol. 10, pp. 371-373, 2000.
[28] I. Aoki, Distributed Active Transformer for Integrated Power Amplification, Ph.D. thesis, California Institute of Technology Pasadena, California, 2001.
[29] J. Javidan, M. Atarodi, and H. C. Luong, “High power amplifier based on a transformer-type power combiner in CMOS technology,” IEEE Transactions on Circuit and Systems, vol. 57, no. 11, 2010.
[30] K. H. An, et al., “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, 2008.
[31] J. Kang, A. Hajimiri, and B. Kim, “A single-chip linear CMOS power amplifier for 2.4 GHz WLAN,” IEEE ISSCC Digest of Technical Papers, pp. 208-209, 2006.
[32] J. Han, et al., “A fully-integrated 900-MHz CMOS power amplifier for mobile RFID reader applications,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.