[1] R. B. Staszewski, D. Leipold, C.-M. Hung and P. T. Balsara, “TDC-based frequency synthesizer for wireless applications,”
IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 215-218, 2004.
[2] R. Staszewski, C.-M. Hung, K. Maggio, J. Wallberg, D. Leipold and P. Balsara, “All-digital phase-domain tx frequency synthesizer for bluetooth radios in 0.13um cmos,” IEEE Solid-State Circuits Conference (ISSCC), 2004.
[3] S. Naraghi, M.
Courcy and M. P.
Flynn, “A 9-bit, 14 μW and 0.06 mm Pulse Position Modulation ADC in 90 nm Digital CMOS,”
IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1870-1880, 2010.
[4] R. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg and P. Balsara, “1.3 V 20 PS time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220-224, 2006.
[5] P. Chen, C. C. Chen, J. Chi, Zheng and Y. S. Shen, “A PVT Insensitive Vernier-Based Time-to-Digital Converter With Extended Input Range and High Accuracy,” IEEE Transactions on Nuclear Science, vol. 54, no. 2, pp. 294-302, 2007.
[6] C. S. Hwang, P. Chen and H. W. Tsao, “A high-precision time-to digital converter using a two-level conversion scheme,” IEEE Transactions on Nuclear Science, vol. 51, no. 8, pp. 1349-1352, 2004.
[7] M. Lee, A. A. Abidi, “A 9 b, 1.25 PS resolution coarse-fine timeto-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 769-777, 2008.
[8] Y. Cao, W. De Cock, M. Steyaert and P. Leroux, “1-1-1 mash time-to-digital converters with 6 PS resolution and third-order noise-shaping,” IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2093-2106, 2012.
[9] P. Chen, S. Liu and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems II, vol. 47, no. 9, pp. 954-958, 2000.
[10] C. M. Hsu, M. Z. Straayer and M. H. Perrott, “A low-noise wide-BW 3.6-GHz digital-fractional-N frequency synthesizer with a noise shaping time-to-digital converter and quantization noise cancellation,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2776-2786, 2008.
[11] M. Z. Straayer and M. H. Perrott, “A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1089-1098, 2009.
[12] M. Memarian, S. Toofan, “A High Res olution, Multi-Path Gated Ring Oscillator Based Vernier Time-to-Digital Converter,” IEEE Semiconductor Conference Dresden(SCD), pp. 1-4, 2011.
[14] S. Lee, B. Kim and K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 289-291, 2009.
[15] J. Chen, H. Yumei and H. Zhiliang, “A multi-path gated
ring oscillator based time-to-digital converter in 65 nm CMOS technology,” Journal of Semiconductors, vol. 34, no.3, pp. 1-5, 2013.
[16] J. G. Maneatis and M. A. Horowitz, “Precise delay generation using coupled oscillators,” IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, 1993.
[17] A. Matsumoto, S. Sakiyama, Y. Tokunaga, T. Morie and S. Dosho, “A design method and developments of a low-power and high-resolution multiphase generation system,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 831-843. 2008.