[۱] ب. باباعباسی, «بیوانفورماتیک سلولی و مولکولی»، صفحه ۱-۱۶ ، ۱۳۹۵.
[2] A. Rahimi, and M. Gönen, “Discriminating early- and late-stage cancers using multiple kernel learning on gene sets”, Bioinformatics, vol. 34, no. 13, pp. i412–i421, 2018.
[3] M. Sherafatian, “Tree-based machine learning algorithms identified minimal set of miRNA biomarkers for breast cancer diagnosis and molecular subtyping”, Gene, vol. 677, pp. 111–118, 2018.
[4] W.Y. Cheng, Ch.Ch. Yang, J.H. Kao, Ch.Ch. Shen, Y.Ch. Yang, and M.H. Tsai, "An Intelligent and Prognostic machine learning model for Glioblastoma Multiforme", Research Square, 2023.
[5] P. Sanghani, "Machine Learning Based Overall Survival Prediction of Glioblastoma Multiforme Patients Using Magnetic Resonance Image Derived Features", PhD Dissertation, National University of Singapore, 2018.
[6] S. Bijari, A. Jahanbakhshi, P. Hajishafiezahramini, and P. Abdolmaleki, "Differentiating glioblastoma multiforme from brain metastases using multidimensional radiomics features derived from MRI and multiple machine learning models", BioMed Research International, vol. 2022, 2022.
[7] Y. Kim, K.H. Kim, J. Park, H.I. Yoon, and W. Sung, "Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model", Radiotherapy and Oncology, vol. 183, pp. 109617, 2023.
[8] Zh. Ya, L. Ao, H. Jie, and M. Wang, "A novel MKL method for GBM prognosis prediction by integrating histopathological image and multi-omics data", IEEE journal of biomedical and health informatics, vol. 24, no. 1 pp. 171-179, 2019.
[9] Z. Zhou, J. Feng, “Deep forest”, national science review, vol. 6, pp.74–86, 2018.
[10] Y.Boualleg, M. Farah, and I.R. Farah, "Remote sensing scene classification using convolutional features and deep forest classifier", IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 12, pp.1944-1948, 2019.
[11] B.Yu, Ch. Chen, X. Wang, Z. Yu, A. Ma, and B. Liu, "Prediction of protein–protein interactions based on elastic net and deep forest", Expert Systems with Applications, vol.176, pp.114876, 2021.
[12] L.Sun, Zh. Mo, F. Yan, L. Xia, F. Shan, Zh. Ding, B. Song, W. Gao, W. Shao, F. Shi, H. Yuan, and H. Jiang, "Adaptive feature selection guided deep forest for covid-19 classification with chest ct", IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2798-2805, 2020.
[13] W.Qin, D. Xu, X. Dong, X. Cui, and S. Zhang, "EEG signal classification based on improved variational mode decomposition and deep forest", Biomedical Signal Processing and Control, vol. 83, pp.104644, 2023.
[14] J. Xia, Z. Ming, and A. Iwasaki, "Multiple sources data fusion via deep forest", In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1722-1725. IEEE, 2018.
[15] H. Yang, R. Chen, D. Li, and Zh. Wang, "Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data", Bioinformatics, vol. 37, no. 16, pp.2231-2237, 2021.
[16] I. Bichindaritz, G. Liu, and Ch. Bartlett, "Integrative survival analysis of breast cancer with gene expression and DNA methylation data", Bioinformatics, vol. 37, no. 17 pp.2601-2608, 2021.
[17] A. Cheerla, and O. Gevaert,"Deep learning with multimodal representation for pancancer prognosis prediction", Bioinformatics, vol. 35, no. 14, pp.i446-i454, 2019.
[18]Q. Meng, D. Catchpoole, D. Skillicom, P. J. Kennedy, “Relational autoencoder for feature extraction”, Proc. Int. Jt. Conf. Neural Networks, pp. 364–371, Proceedings of 2017 International Joint Conference on Neural Networks, 2017.
[19] W. Liu, H. Lin, L. Huang, L. Peng, T. Tang, Q. Zhao, and L. Yang, "Identification of miRNA–disease associations via deep forest ensemble learning based on autoencoder", Briefings in Bioinformatics, vol. 23, no. 3 pp. bbac104, 2022.
[20] X. Hu, Y. Zhixiang, Z. Zhiliang, and Y. Peng, "Prediction of miRNA–Disease Associations by Cascade Forest Model Based on Stacked Autoencoder", Molecules, vol. 28, no. 13, pp. 5013, 2023.
[۲۱] مرتضی جهانتیغ و مصطفی چرمی، «افزایش صحت طبقه بندی سیگنالهایEEG تصور حرکتی با ترکیب منطقی طبقهبندها و با به کارگیری الگوریتم ژنتیک و درختان تصمیم کوچک»، مجله مهندسی برق دانشگاه تبریز، جلد ۴۷ ، شماره ۳، صفحه ۹۳۱-۹۳۸، ۱۳۹۶.
[۲۲] فرنوش عارفی و علی نادیان، «تشخیص اجزای بدن انسان در تصاویر RGB-D با استفاده از ویژگیهای الگوی تغییرات عمق و تفاضل مکانی عمق»، مجله مهندسی برق دانشگاه تبریز، جلد ۴۹ ، شماره ۴، صفحه ۱۷۵۵-۱۷۴۵، ۱۳۹۸.
[۲۳] ندا خانبانی و امیرمسعود افتخاری مقدم، «ارائه یک روش تشخیص زبان علامت مبتنی بر رویکردMLRF فازی با استفاده از اطلاعات عمق تصویر»، مجله مهندسی برق دانشگاه تبریز، جلد ۴۷ ، شماره ۳، صفحه ۹۷۸-۹۸۷، ۱۳۹۶.
[24] Z. E. Ashari, S. L. Broschat, “T-Tree and t-Forest: Decision Tree and Random Forest Algorithms Including the Relevance Factor with Applications in Bioinformatics”, Proceedings of 2019 IEEE International Conference Bioinforma. Biomed, pp. 2779–2783, 2019.
[25] S. Zhou, S. Wang, Q. Wu, R. Azim, W. Li, “Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression”, Computational Biology and Chemistry, vol. 85, 2020.
[26] M. Fratello, R. Tagliaferri, “Decision trees and random forests”, Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics, vol. 1–3, pp. 374–383, 2018.
[27] Z. Jagga, D. Gupta, “Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms”, BMC proceedings, vol. 8, pp. 1–7, 2014.
[28] Datema, Frank R., Ana Moya, Peter Krause, Thomas Bäck, Lars Willmes, Ton Langeveld, Robert J. Baatenburg de Jong, Henk M. Blom., “Novel head and neck cancer survival analysis approach: Random survival forests versus cox proportional hazards regression”, Head Neck, vol. 34, no. 1, p. Pages 50-58, 2010.
[29] A. A. Kim, S. Rachid Zaim, V. Subbian, “Assessing reproducibility and veracity across machine learning techniques in biomedicine: A case study using TCGA data”, International Journal of Medical Informatics, vol. 141, p. 104148, 2020.
[30] Y. O. Nunez Lopez, B. Victoria, P. Golusinski, W. Golusinski, M. M. Masternak, “Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes”, Reports Pract. Oncol. Radiother, vol. 23, no. 1, pp. 6–20, 2018.
[31] Y. Fang, H. Lu, and H. Liu, "Multi-modality deep forest for hand motion recognition via fusing sEMG and acceleration signals", International Journal of Machine Learning and Cybernetics, vol. 14, no. 4, pp.1119-1131, 2023.
[32] Y. Guo, S. Liu, Z. Li, X. Shang, “BCDForest : a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data”, BMC Bioinformatics, vol. 19, no. Suppl 5, pp. 1–13, 2018.
[33] J. Xu, P. Wu, Y. Chen, Q. Meng, H. Dawood, M. M. Khan, “A Novel Deep Flexible Neural Forest Model for Classification of Cancer Subtypes Based on Gene Expression Data”, IEEE Access, vol. 7, pp. 22086–22095, 2019.
[34] J. Xu, P. Wu, Y. Chen, Q. Meng, H. Dawood, H. Dawood, “Open Access A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data”, BMC Bioinformatics, pp. 1–11, 2019.