پیش‌تقویت‌کننده کاملاً متعادل با هدایت انتقالی بهبود یافته بر پایه بافر ولتاژ تاخورده

نوع مقاله : علمی-پژوهشی

نویسندگان

1 Faculty of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz 5331817634, Iran

2 Iranian Space Research Center (ISRC), Tehran, Iran

چکیده

در این مقاله یک پیش‌تقویت‌کننده کاملاً متعادل با بهره بالا ارائه شده است. در ساختار پیشنهادی از بافر ولتاژ تاخورده استفاده شده تا یک ناقل جریان کوچک با امپدانس ورودی بسیار کم حاصل شود. سپس، این ناقل جریان به عنوان المان اصلی برای تحقق یک تقویت‌کننده تراهدایتی با بهره بالا و هدایت انتقالی بهبود یافته استفاده می‌شود. تقویت‌کننده ارائه شده برای استفاده به عنوان پیش‌تقویت‌کننده مناسب است. بهره بالای تقویت‌کننده، آن را برای استفاده در ساختار حلقه بسته برای رسیدن به دقت بالا یا قابلیت برنامه ریزی بسیار مناسب می سازد. ساختار پیشنهادی توان بسیار کم 150 نانووات را از ولتاژ تغذیه 0.6 ولت مصرف می‌کند. جانمایی مدار و شبیه‌سازی‌ آن در فناوری TSMC 180nm CMOS انجام شده است. بهره حلقه باز تقویت کننده 141.5 دسی‌بل بوده و در حلقه فیدبک با بهره 60 دسی‌بل، پهنای باند فرکانسی حدود 2.4 کیلوهرتز را نشان می‌دهد. اندازه خازن بار 5 پیکوفاراد انتخاب شده است. در ساختار پیشنهادی نسبت رد حالت مشترک و نسبت رد ولتاژ تغذیه به ترتیب برابر 148.3 دسی‌بل و 153.7 دسی‌بل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An FVF-Based Gm-Enhanced fully balanced Preamplifier

نویسندگان [English]

  • H. Faraji Baghtash 1
  • M. Kargar 2
1 Faculty of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz 5331817634, Iran
2 Iranian Space Research Center (ISRC), Tehran, Iran
چکیده [English]

A High-gain, fully balanced preamplifier is presented. The proposed structure advantages flipped voltage follower scheme to achieve a compact current conveyor with very low input impedance. The presented current conveyor then is used as a core element to realize a high-gain, gm-enhanced trans-conductance amplifier. The presented amplifier is suitable for application as a preamplifier. The high gain of amplifier makes it very suitable to be configured in a feedback form to deliver a high-precision predefined or programmable amplification gain. The proposed structure draws a very low power of 150nW from a 0.6V supply voltage.
The Spectre Post-layout simulations with TSMC 180nm CMOS technology have been performed. The proposed amplifier exhibits an open-loop DC gain of 141.5dB and 3-dB frequency bandwidth of 2.4kHz at 60dB closed-loop configuration. The load capacitance is set to be 5pF. The proposed structure also delivers high CMRR and PSRR values of 148.3dB and 153.7dB, respectively.

کلیدواژه‌ها [English]

  • FVF
  • OTA
  • Low Power
  • Low Voltage
  • CCII
  • preamplifier
[1]  A. Fahim, "Challenges in low-power analog circuit design for sub-28nm CMOS technologies," in 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 11-13 Aug. 2014 2014, pp. 123-126, doi: 10.1145/2627369.2631639.
[2]  W. Sansen, "Analog design challenges in nanometer CMOS technologies," in 2007 IEEE Asian Solid-State Circuits Conference, 12-14 Nov. 2007 2007, pp. 5-9, doi: 10.1109/ASSCC.2007.4425792.
[3]  H. Veldandi and R. A. Shaik, "A 0.3-V Pseudo-Differential Bulk-Input OTA for Low-Frequency Applications," Circuits, Systems, Signal Processing, vol. 37, no. 12, pp. 5199-5221, 2018.
[4]  S. Sadeghi, M. Nayeri, M. Dolatshahi, and A. Moftakharzadeh, "Novel Ultra-Low-Power Mirrored Folded-Cascode Transimpedance Amplifier," Journal of Electrical and Computer Engineering Innovations (JECEI), vol. 11, no. 1, pp. 217-228, 2023, doi: 10.22061/jecei.2022.9015.568.
[5]  H. Faraji Baghtash, "A 0.4 V, tail-less, fully differential trans-conductance amplifier: an all inverter-based structure," Analog Integrated Circuits and Signal Processing, vol. 104, no. 1, pp. 1-15, 2020/07/01 2020, doi: 10.1007/s10470-020-01662-5.
[6]  H. Faraji Baghtash, "A 0.4 ​V, body-driven, fully differential, tail-less OTA based on current push-pull," Microelectronics Journal, vol. 99, p. 104768, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.mejo.2020.104768.
[7]  K. Monfaredi and H. Faraji Baghtash, "An Extremely Low-Voltage and High-Compliance Current Mirror," Circuits, Systems, and Signal Processing, 2019/06/20 2019, doi: 10.1007/s00034-019-01175-1.
[8]  R. Sanati, F. Khatib, M. Javadian Sarraf, and R. Kardehi Moghaddam, "Low Power Bulk-Driven Time-Domain Comparator with High Voltage-to-Time Gain," Tabriz Journal of Electrical Engineering, vol. 51, no. 4, pp. 393-401, 2022. [Online]. Available: https://tjee.tabrizu.ac.ir/article_14817_9188a938a1095e0ea051ccb71876ce5d.pdf.
[9]  H. Faraji Baghtash, "Mismatch Tolerant, Wide Bandwidth Current Mirror," Tabriz Journal of Electrical Engineering, vol. 48, no. 1, pp. 231-236, 2018. [Online]. Available: https://tjee.tabrizu.ac.ir/article_7461_4aef6a02790b1cf9d2ebbe882a41ce5a.pdf.
[10]         F. Khateb, T. Kulej, H. Veldandi, and W. Jaikla, "Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits," AEU-International Journal of Electronics Communications, vol. 100, pp. 32-38, 2019.
[11]         T. Dubey and V. Bhadauria, "A low-voltage highly linear OTA using bulk-driven floating gate MOSFETs," AEU - International Journal of Electronics and Communications, vol. 98, pp. 29-37, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.aeue.2018.10.034.
[12]         D. N. Jagadish and M. S. Bhat, "A Low Voltage Inverter Based Differential Amplifier for Low Power Switched Capacitor Applications," in 2014 Fifth International Symposium on Electronic System Design, 15-17 Dec. 2014 2014, pp. 58-62, doi: 10.1109/ISED.2014.20.
[13]         T. Kulej and F. Khateb, "A Compact 0.3-V Class AB Bulk-Driven OTA," IEEE Transactions on Very Large Scale Integration Systems, 2019.
[14]         R. Nagulapalli, K. Hayatleh, and S. Barker, "A Positive Feedback-Based Op-Amp Gain Enhancement Technique for High-Precision Applications," Journal of Circuits, Systems and Computers, vol. 29, no. 14, p. 2050220, 2020, doi: 10.1142/s0218126620502205.
[15]         M. Parvizi, K. Allidina, and M. N. El-Gamal, "Short Channel Output Conductance Enhancement Through Forward Body Biasing to Realize a 0.5 V 250 uW 0.6–4.2 GHz Current-Reuse CMOS LNA," IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 574-586, 2016, doi: 10.1109/JSSC.2015.2504413.
[16]         Y. Li, K. Han, X. Tan, N. Yan, and H. J. E. l. Min, "Transconductance enhancement method for operational transconductance amplifiers," Electronics Letters, vol. 46, no. 19, pp. 1321-1323, 2010.
[17]         X. Zhao, Q. Zhang, Y. Wang, M. J. A.-I. J. o. E. Deng, and Communications, "Transconductance and slew rate improvement technique for current recycling folded cascode amplifier," AEU - International Journal of Electronics and Communications, vol. 70, no. 3, pp. 326-330, 2016.
[18]         J. M. Carrillo, G. Torelli, J. J. A. I. C. Duque-Carrillo, and S. Processing, "Transconductance enhancement in bulk-driven input stages and its applications," Analog Integrated Circuits and Signal Processing, vol. 68, no. 2, pp. 207-217, 2011.
[19]         Q. Zhang, X. Zhao, X. Zhang, Q. J. A.-I. J. o. E. Zhang, and Communications, "Multipath recycling method for transconductance enhancement of folded cascade amplifier," AEU - International Journal of Electronics and Communications, vol. 72, pp. 1-7, 2017.
[20]         M. Akbari, S. Biabanifard, S. Asadi, M. C. J. A.-I. J. o. E. Yagoub, and Communications, "Design and analysis of DC gain and transconductance boosted recycling folded cascode OTA," AEU - International Journal of Electronics and Communications, vol. 68, no. 11, pp. 1047-1052, 2014.
[21]         M. Menon, K. Dhall, A. Gupta, and N. Chaturvedi, "Low power cascaded three stage amplifier with multipath nested miller compensation," in 2010 International Conference on Recent Trends in Information, Telecommunication and Computing, 2010: IEEE, pp. 9-12.
[22]         S. Biabanifard, S. M. Largani, A. Biamanifard, M. Biabanifard, M. Hemmati, and Z. Khanmohammadi, "Three stages CMOS operational amplifier frequency compensation using single Miller capacitor and differential feedback path," Analog Integrated Circuits and Signal Processing, vol. 97, no. 2, pp. 195-205, 2018/11/01 2018, doi: 10.1007/s10470-018-1117-5.
[23]         W.-S. Tam and C.-W. Kok, "Design methodology of double nulling resistors nested-Miller compensation of multistage amplifier," Solid State Electronics Letters, vol. 1, no. 1, pp. 15-24, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ssel.2018.06.001.
[24]         T. Kulej and F. Khateb, "Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS," international Journal of Circuit Theory and Applications, vol. 46, no. 6, pp. 1129-1143, 2018, doi: 10.1002/cta.2465.
[25]         L. H. C. Ferreira and S. R. Sonkusale, "A 60-dB Gain OTA Operating at 0.25-V Power Supply in 130-nm Digital CMOS Process," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 6, pp. 1609-1617, 2014, doi: 10.1109/TCSI.2013.2289413.
[26]         X. Zhao, H. Fang, T. Ling, and J. J. I. Xu, "Transconductance improvement method for low-voltage bulk-driven input stage," Integration The VLSI Journal, vol. 49, pp. 98-103, 2015.
[27]         M. Trakimas and S. Sonkusale, "A 0.5 V bulk-input OTA with improved common-mode feedback for low-frequency filtering applications," Analog Integrated Circuits and Signal Processing, journal article vol. 59, no. 1, pp. 83-89, April 01 2009, doi: 10.1007/s10470-008-9236-z.
[28]         N. Suda, P. V. Nishanth, D. Basak, D. Sharma, and R. P. Paily, "A 0.5-V low power analog front-end for heart-rate detector," Analog Integrated Circuits and Signal Processing, journal article vol. 81, no. 2, pp. 417-430, November 01 2014, doi: 10.1007/s10470-014-0402-1.
[29]         M. Akbari and O. Hashemipour, "A 0.6-V, 0.4-µW bulk-driven operational amplifier with rail-to-rail input/output swing," Analog Integrated Circuits Signal Processing, vol. 86, no. 2, pp. 341-351, 2016.
[30]         A. D. Grasso, S. Pennisi, G. Scotti, and A. Trifiletti, "0.9-V Class-AB Miller OTA in 0.35-μm  CMOS With Threshold-Lowered Non-Tailed Differential Pair," IEEE Transactions on Circuits Systems I: Regular Papers, vol. 64, no. 7, pp. 1740-1747, 2017.