Pseudo-random Number Generator Based on Autaptic Izhikevich Neuron Model under Electromagnetic Radiation and Its FPGA Implementation

نوع مقاله : علمی-پژوهشی

نویسنده

Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

چکیده

The electrical behavior of neurons can be more complex in the presence of autapse. In the presence of an autaptic connection, the Izhikevich neuron model can show a variety of dynamic behaviors, such as chaotic behavior. This paper presents a novel, high speed and robust pseudo random number generator based on the autaptic Izhikevich neuron oscillator and its FPGA implementation. The autaptic Izhikevich neuron model is simulated and dynamically analyzed. Then, the proposed pseudo-random number generator is modeled and simulated using the Xilinx system generator platform, synthesized using Xilinx Synthesis Tool, and implemented on the XILINX SPARTAN-6 XC6SLX9 FPGA evaluation board. As a post processing operation, the XOR function is used to increase the randomness of the output bit sequences. The FPGA implementation results show that the implementation cost of the proposed pseudo-random number generator is lower than similar works, and the proposed generator achieves a maximum frequency of 63.2 MHz. The NIST test suite is used for testing the quality of the generated bit sequences. The NIST test results indicates the high quality of the generated random bit sequence.

کلیدواژه‌ها


عنوان مقاله [English]

Pseudo-random Number Generator Based on Autaptic Izhikevich Neuron Model under Electromagnetic Radiation and Its FPGA Implementation

نویسنده [English]

  • M. S. Feali
Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده [English]

The electrical behavior of neurons can be more complex in the presence of autapse. In the presence of an autaptic connection, the Izhikevich neuron model can show a variety of dynamic behaviors, such as chaotic behavior. This paper presents a novel, high speed and robust pseudo random number generator based on the autaptic Izhikevich neuron oscillator and its FPGA implementation. The autaptic Izhikevich neuron model is simulated and dynamically analyzed. Then, the proposed pseudo-random number generator is modeled and simulated using the Xilinx system generator platform, synthesized using Xilinx Synthesis Tool, and implemented on the XILINX SPARTAN-6 XC6SLX9 FPGA evaluation board. As a post processing operation, the XOR function is used to increase the randomness of the output bit sequences. The FPGA implementation results show that the implementation cost of the proposed pseudo-random number generator is lower than similar works, and the proposed generator achieves a maximum frequency of 63.2 MHz. The NIST test suite is used for testing the quality of the generated bit sequences. The NIST test results indicates the high quality of the generated random bit sequence.

کلیدواژه‌ها [English]

  • “Izhikevich”
  • “Neuron”
  • “Autapse”
  • “Randon number generator”
[1] K. Gu, N. Wu, B. Yin, W. Jia, "Secure data sequence query framework based on multiple fogs", IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 1883-1900, 2019.
 [2] ل.صادقی خرمی، ع. صفوی، "طراحی رویتگر امن با ورودی ناشناخته با استفاده از رمزنگاری"، مجله مهندسی برق دانشگاه تبریز، دوره 50، شماره 2، صفحه 757-764 ، سال 1399.
[3] K. Gu, X. Dong, L. Wang, "Efficient traceable ring signature scheme without pairings", Advances in Mathematics of Communications, vol. 14, no. 2, pp. 207, 2020.
[4] F. Yu, S. Qian, X. Chen, Y. Huang, S. Cai, J. Jin, S. Du, "Chaos-based engineering applications with a 6D memristive multistable hyperchaotic system and a 2D SF-SIMM hyperchaotic map", Complexity 2021, 2021.
[5] M. Itoh, "Spread spectrum communication via chaos", International Journal of Bifurcation and Chaos, vol. 9, no. 01, pp.155-213, 1999.
[6] Y. Wang, Z. Liu, J. Ma, H. He, "A pseudorandom number generator based on piecewise logistic map", Nonlinear Dynamics, vol. 83, no. 4, pp. 2373-2391, 2016.
[7] C. Wang, L. Xiong, J. Sun, W. Yao, "Memristor-based neural networks with weight simultaneous perturbation training", Nonlinear Dynamics, vol. 95, no. 4, pp. 2893-2906, 2019.
[8] L. Zhou, F. Tan, F. Yu, "A robust synchronization-based chaotic secure communication scheme with double-layered and multiple hybrid networks", IEEE Systems Journal, vol. 14, no. 2, pp. 2508-2519, 2019.
[9] Y. Huang, Y. Wang, Y. Zhang, "Shape synchronization of drive-response for a class of two-dimensional chaotic systems via continuous controllers", Nonlinear Dynamics, vol. 78, no. 4, pp. 2331-2340, 2014.
[10] Cicek, Ihsan, Ali Emre Pusane, and Gunhan Dundar. "A new dual entropy core true random number generator." Analog Integrated Circuits and Signal Processing 81, no. 1 (2014): 61-70.
[11] M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, A. Rizzo, "Does chaos work better than noise?", IEEE Circuits and Systems Magazine, vol. 2, no. 3,  pp.4-19, 2002.
[12] H. Hu, L. Liu, N. Ding, "Pseudorandom sequence generator based on the Chen chaotic system", Computer Physics Communications. Vol. 184, no. 3, pp. 765-768, 2013.
[13] M. A. Murillo-Escobar, C. Cruz-Hernández, L. Cardoza-Avendaño, R. Méndez-Ramírez, "A novel pseudorandom number generator based on pseudorandomly enhanced logistic map", Nonlinear Dynamics, vol. 87, no. 1, pp. 407-425, 2017.
[14] A. Akhshani, A. Akhavan, A. Mobaraki, S-C. Lim, Z. Hassan, "Pseudo random number generator based on quantum chaotic map", Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 1, pp. 101-111, 2014.
[15] E. Avaroğlu, I. Koyuncu, A. Bedri Özer, M. Türk, "Hybrid pseudo-random number generator for cryptographic systems", Nonlinear Dynamics, vol. 82, no. 1, pp. 239-248, 2015.
[16] S. Zhang, J. Zheng, X. Wang, Z. Zeng, “Multi-scroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 1, pp. 011101, 2021.
[17] F. Yu, Z. Zhang, H. Shen, Y. Huang, S. Cai, J. Jin, S. Du, “Design and FPGA implementation of a pseudo-random number generator based on a Hopfield neural network under electromagnetic radiation”, Frontiers in Physics, pp. 302, 2021.
[18] H. Lin, C. Wang, W. Yao, Y. Tan, "Chaotic dynamics in a neural network with different types of external stimuli", Communications in Nonlinear Science and Numerical Simulation, vol.90, pp. 105390, 2020.
[19] P. Kwan, J. Brodie, "Early identification of refractory epilepsy", New England Journal of Medicine, vol. 342, no. 5. Pp. 314-319, 2000.
[20] A.L. Goldberger, D.R. Rigney, B.J. West, "Chaos and fractals in human physiology", Scientific American, vol. 262, no. 2, pp. 42-49, 1990.
[21] A.L. Hodgkin, A.F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve", The Journal of physiology, vol. 117, no. 4, pp. 500, 1952.
[22] J.L. Hindmarsh, R.M. Rose, "A model of neuronal bursting using three coupled first order differential equations", Proceedings of the Royal society of London. Series B. Biological sciences, vol. 221, no. 1222, 87-102, 1984.
[23] R. FitzHugh, "Impulses and physiological states in theoretical models of nerve membrane", Biophysical journal, vol. 1, no. 6, pp. 445-466, 1961.
[24] J. Nagumo, , S. Arimoto, S. Yoshizawa, "An active pulse transmission line simulating nerve axon", Proceedings of the IRE, vol. 50, no. 10, pp.2061-2070, 1962.
[25] E. M. Izhikevich, "Simple model of spiking neurons", IEEE Transactions on neural networks, vol. 14, no. 6, pp.1569-1572, 2003.
[26] E. M. Izhikevich, "Which model to use for cortical spiking neurons?", IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063-1070, 2004.
[27] H. Wang, J. Ma, Y. Chen, Y. Chen, "Effect of an autapse on the firing pattern transition in a bursting neuron", Communications in Nonlinear Science and Numerical Simulation, vol.19, no. 9, pp. 3242-3254, 2014.
[28] Y. Xu, H. Ying, Y. Jia, J. Ma, T. Hayat, "Autaptic regulation of electrical activities in neuron under electromagnetic induction", Scientific Reports, vol. 7, no. 1, pp.1-12, 2017.
[29] M. Lv, C. Wang, G. Ren, J. Ma, X. Song, "Model of electrical activity in a neuron under magnetic flow effect", Nonlinear Dynamics, vol. 85, no. 3, pp.1479-1490, 2016.
[30] D. Guo, S. Wu, M. Chen, M. Perc, Y. Zhang, J. Ma, Y. Cui, P. Xu, Y. Xia, D. Yao, "Regulation of irregular neuronal firing by autaptic transmission", Scientific reports, vol. 6, no. 1, pp.1-14, 2016.
[31] J. M. Bekkers, "Synaptic transmission: functional autapses in the cortex", Current Biology, vol. 13, no. 11, pp. R433-R435, 2003.
[32] G. Wang, Y. Wu, F. Xiao, Z. Ye, Y. Jia, "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction", Physica A: Statistical Mechanics and its Applications, vol. 598, pp.127274, 2022.
[33] S. Nobukawa, H. Nishimura, T. Yamanishi, J. Liu, "Analysis of chaotic resonance in Izhikevich neuron model", PloS one, vol. 10, no. 9, pp. e0138919, 2015.
[34] A. Tamura, T. Ueta, S. Tsuji, "Bifurcation analysis of Izhikevich neuron model." Dynamics of continuous, discrete and impulsive systems, Series A: mathematical analysis, vol. 16, no. 6, pp. 759-775, 2009.
[35] Y. Li, G. Schmid, P. Hänggi, L. Schimansky-Geier, "Spontaneous spiking in an autaptic Hodgkin-Huxley setup", Physical Review E, vol. 82, no. 6, pp. 061907, 2010.
[36] J-L. Danger, S. Guilley, P. Hoogvorst, "High speed true random number generator based on open loop structures in FPGAs", Microelectronics journal, vol. 40, no. 11, pp. 1650-1656, 2009.
[37] M. Garcia-Bosque, A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea, S. Celma, "Chaos-based bitwise dynamical pseudorandom number generator on FPGA", IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 1, pp. 291-293, 2018.
[38] I. Koyuncu, M. Tuna, I. Pehlivan, C. Bülent Fidan, M. Alçın, "Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator", Analog Integrated Circuits and Signal Processing, vol. 102, no. 2, pp. 445-456, 2020.
[39] V. Guglielmi, P. Pinel, D. Fournier-Prunaret, A. Taha, "Chaos-based cryptosystem on DSP", Chaos, Solitons & Fractals, vol. 42, no. 4, pp. 2135-2144, 2009.
[40] F. Yu, L. Li, B. He, L. Liu, S. Qian, Z. Zhang, H. Shen, S. Cai, Y. Li, "Pseudorandom number generator based on a 5D hyperchaotic four-wing memristive system and its FPGA implementation", The European Physical Journal Special Topics, vol. 230, no. 7, pp. 1763-1772, 2021.
[41] F. Yu, L. Li, B. He, L. Liu, S. Qian, Y. Huang, S. Cai, "Design and FPGA implementation of a pseudorandom number generator based on a four-wing memristive hyperchaotic system and Bernoulli map", IEEE Access, vol. 7, pp. 181884-181898, 2019.
[42] پ. دری، ع. قیاسیان، ح. سعیدی، "طراحی و پیاده‌سازی رمزنگار AES در بستر FPGA برای خطوط پرسرعت"، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحه 153-167، سال 1395.
[43] C. A. Lúa, S. D. Gennaro, A. N. Guzman, S. Ortega-Cisneros, J. R. Domínguez, "Digital implementation via FPGA of controllers for active control of ground vehicles", IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2253-2264, 2019.
[44] L. D. Medus, T. Iakymchuk, J. Vicente Frances-Villora, M. Bataller-Mompeán, A. Rosado-Muñoz. "A novel systolic parallel hardware architecture for the FPGA acceleration of feedforward neural networks", IEEE Access, vol. 7, pp. 76084-76103, 2019.
[45] M. Meribout, I. M. Saied, E. Al Hosani, "A new FPGA-based terahertz imaging device for multiphase flow metering", IEEE Transactions on Terahertz Science and Technology, vol.  8, no. 4, pp. 418-426, 2018.
[46] M, Tuna, M. Alçın, I. Koyuncu, C. B. Fidan, I. Pehlivan, "High speed FPGA-based chaotic oscillator design", Microprocessors and Microsystems, vol. 66, pp. 72-80, 2019.
[47] E.A. Hagras, M. Saber, “Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption”, Multimedia Tools and Applications, vol. 79, no. 31, pp. 23203-23222, 2020.
[48] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, D.Banks, "A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800-22 (revised May 15." (2002).