بهبود سرعت مقایسه‌کننده دینامیکی تک-فاز

شناسنامه علمی شماره

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه زنجان

چکیده

در این مقاله، مقایسه‌گر دینامیکی تک-فاز با اضافه‌نمودن یک لچ NMOS کمکی در گره خروجی و دو ترانزیستور NMOS کلاک‌دار در گره‌های داخلی آن بهبود داده شده است. این لچ و ترانزیستورهای NMOS کلاک‌دار، بدون افزایش اثر بارگذاری خازنی و نویز بازگشتی بر روی طبقات قبلی و بعدی مقایسه‌گر، موجب افزایش سرعت مقایسه‌گر شدند. مقایسه‌گر پیشنهادی با صرف توان تلفاتی دینامیکی تقریباً یکسان نسبت به مقایسه‌گر متداول دارای سرعت بالاتر است. برای نشان‌دادن بهبود ویژگی‌های مذکور، مقایسه‌گرهای پیشنهادی و متداول در نرخ نمونه‌برداری -GS/s2 در پروسه 0.18-μm CMOS آنالیز و شبیه‌سازی گردیدند. در این مورد، خروجی‌های مقایسه‌گر پیشنهادی نسبت به مقایسه‌گر متداول تقریباً 18 پیکوثانیه (9%) سریع‌تر تعیین شدند. همچنین برای مقایسه عملکرد مقایسه‌گرهای پیشنهادی و متداول در مبدل‌ها، دو مبدل فلش 4-بیتی با به‌کارگیری مقایسه‌گرهای پیشنهادی و متداول در بلوک زنجیره‌های مقایسه‌کننده‌شان در فرکانس نمونه‌برداری -GS/s2 طراحی و شبیه‌سازی شدند. نتایج شبیه‌سازی‌ها، ضرایب شایستگی مبدل‌ها (FOM) با مقایسه‌گرهای پیشنهادی و متداول را به‌ترتیب pJ/conv.step-61/0 و  pJ/conv.step-72/0 و تعداد بیت مؤثر خروجی (ENOB) مبدل‌ها را به‌ترتیب Bit-74/3 و Bit-45/3 نشان می‌دهند. علاوه‌بر آنآنآآ«، توان‌های تلفاتی آرایه مقایسه‌گرها در دو مبدل با مقایسه‌گرهای پیشنهادی و متداول به‌ترتیب –mW23/4 و –mW09/4 می‌باشند. همچنین تلفات توان دو مبدل، بدون توان‌های تلفاتی آرایه مقایسه‌گرهایشان به ترتیب mW-03/12 و mW-70/11 است.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Single-Phase Dynamic-Latched Comparator

نویسندگان [English]

  • M. Soleimani
  • S. Toofan
Faculty of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

In this paper, single-phase dynamic comparator was improved based on adding a clocked NMOS auxiliary latch at its output and two clocked NMOS transistors at its internal nodes. Using clocked NMOS latch and transistors increased the speed of comparator, without increasing the loading effect and kick-back noise on its previous and next stages. The advantage of the proposed comparator rather than the conventional comparator was higher speed with precence same power dissipations. To demonstrate the mention specifications, proposed and conventional comparators were analyzed and simulated at 2-GS/s sampling rate in 0.18-μm CMOS process. In this case, the outputs of proposed comparator were determined almost 18-ps (%9) faster than the outputs of conventional comparator. Also, to compare the performances of proposed and conventional comparators in flash ADCs, two 4-bits flash ADCs, using proposed and conventional comparators in their comparison chains blocks, were designed and simulated at 2-GS/s. In this case, the FOM of ADCs with the proposed and conventional comparators at nyquist rate input frequency achieved 0.61-pJ/conv.step and 0.72-pJ/conv.step, respectively. Corresponding, the ENOB of ADCs achieved 3.74-Bit and 3.45-Bit, respectively. In addition, the power dissipations of comparators array of ADCs with proposed and conventional comparators were 4.23-mW and 4.09-mW, respectively. Also, the power dissipations of two flash ADCs, without the power dissipations of their comparators array, were 11.70-mW and 12.03-mW, respectively.

کلیدواژه‌ها [English]

  • Flash ADC
  • single-phase dynamic comparator
  • NMOS latch
  • and kick-back noise
[1]      S. Sheikhaei, S. Mirabbasi and A. Ivanov, “A 43-mW single-channel 4-GS/s 4-bit flash ADC in 0.18 μm CMOS,” in Proc. IEEE International Custom Integr. Circuits Conf. (CICC), PP. 333-336, 2007.
[2]      S. Park, Y. Palaskas, A. Ravi, R.E. Bishop and M.P. Flynn, “A 3.5-GS/s 43-mW single-channel 5-b flash ADC in 90-nm CMOS,” IEEE International Custom Integrated Circuits Conf. (CICC), PP. 489-492, 2006.
[3]      M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D converter in 0.35-μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1847-1858, Dec. 2001.
[4]      K. Deguchi, N. Suwa, M. Ito, T. Kumamoto and T. Miki, “A 6-bit 3.5-GS/s 0.9-V 98-mW flash ADC in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2303-2310, Oct. 2008.
[5]      B. Wicht, T. Nirschl and D. S. Landsiedel, “Yeild and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, Jul. 2004.
[6]      H. Y. Chang, and C. Y. Yang, “A reference voltage interpolation-based calibration method for flash ADC,” IEEE Trans. Very Large Scale Integration Systems, vol. 24, no. 5, pp. 1-11, Jan. 2016.
[7]      J. I. Kim, D. R. Oh, D. S. Jo, B. R. Saim and S. T. Ryu, “A 65-nm CMOS 6-b 2-GS/s 20.7mW flash ADC with cascaded latch interpolation,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 1-12, Oct. 2015.
[8]      A. Varzaghani, A. Kasapi, D. N. Loizos, S. H. Paik, S. Verma, S. Zogopoulos and S. Sidiropoulos, “A 10.3-GS/s 6-bit flash ADC for 10G Ethernet apllications,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 1-11, Dec. 2013.
[9]      M. Chahardori, M. Sharifkhani and S. Sadughi, “A 4-bit, 1.6-GS/s low-power flash ADC, based on offset calibration and segmentation,” IEEE Trans. Circuits and Systems-I, Regular Papers, vol. 60, no. 9, pp. 2285-2297, Sep. 2013.
[10]      J. Yao, J. Liu and H. Lee, “Bulk voltage trimming offset calibration for high-speed flash ADCs,” IEEE Trans. Circuits and Systems-II, Exp. Beiefs, vol. 57, no. 2, pp. 110-114, Feb. 2010.
[11]      P. Nuzzo, G. Van der Plas, F. De Bernardinis, L. van der Perre, B. Gyselinckx and P Terreni, “A 10.6-mW/0.8-pJ power-scale 1GS/s 4b ADC in 0.18μm CMOS with 5.8GHz ERBW,” in Proc. IEEE Int. Design Automation Conf. (DAC), pp. 873-878, 2006.
[12]      A A. Ismail, M. Elmasry, “A 6-bit 1.6-GS/s low-power wideband flash ADC converter in 0.13μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1982-1990, Sep. 2007.
[13]      X. Yang and J. Liu, “A 10-GS/s 6-b time-interleaved partially active flash ADC,” IEEE Tran. Circuits and Systems-I, vol. 61, no. 8, pp. 2272-2280, Aug. 2014.
[14]      B. W. Chen, S. K. Hsien, C. S. Chiang and K. C. Juang, “A 6-bit 1.2 GS/s ADC with wideband THA in 0.13-μm CMOS,” IEEE Asian Solid-State Circuits Conference, pp. 381-384, Japan, Nov. 2008.
[15]      C. Sandner, M. Clara, A. Santner, T. Hartig and F. Kuttner, “A 6-bit 1.2-GS/s low-power flash ADC in 0.13-μm digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499-1505, Jul. 2005.
[16]      Y. Nakajima, N. Kato, A. Sakaguchi, T. Ohkido and T. Miki, “A 7-bit, 1.4 GS/s ADC with offset drift suppression techniques for one-time calibration,” IEEE Trans. Circuits and Systems-I, Regular Papers, vol. 60, no. 8, pp. 1979-1990, Aug. 2013.
[17]      C.-Y. Chen, M. Q. Le and K. Y. Kim, “A low power 6-b flash ADC with reference voltage and common-mode calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1041-1046, Apr. 2009.
[18]      T. Ito and T. Itakura, “A 3-GS/s 5-bit 36-mW flash ADC in 65-nm CMOS,” IEEE Asian Solid-State Circuits Conference, pp. 181-184, China, 2010.
[19]      J. Pernillo and M. P. Flynn, “A 1.5-GS/s flash ADC with 57.7-dB SFDR 6.4-Bit ENOB in 90-nm digital CMOS,” IEEE Trans. Circuits and Systems-II, Exp. Beiefs, vol. 58, no. 12, pp. 837-841, Dec. 2011.
[20]      مهدی حسین‌نژاد، حسین شمسی، «طراحی و شبیه‌سازی مبدل آنالوگ به دیجیتال لوله‌ای مبتنی بر مقایسه‌گر ولتاژ پایین»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحات 209-219، تابستان 1395.
[21]      خلیل منفردی، یوسف بلقیس‌آذر، «تقویت‌کننده کسکود تمام تفاضلی بازیابی تاشده بهبودیافته ولتاژ و توان پایین»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 1، صفحات 327-334، بهار 1397.
[22]      Seyed Javad Azhari, Khalil Monfaredi and Salar Amiri, “A 12-bit, low-voltage, nanoampere-based, ultralow-power, ultralow-glitch current-steering DAC for HDTV,” International Nano Letters, vol. 2, no. 1, pp. 2-7, Nov. 2012.
[23]      David Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons press, 1997.