تشخیص حمله‌ی سایبری تزریق داده‌ی غلط در شبکه‌ی‌ برق مبتنی‌بر PMU با استفاده از فیلتر‌ کالمن

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی - دانشگاه شهرکرد

2 بخش مهندسی برق - دانشگاه شهید باهنر کرمان

چکیده

با گسترش استفاده از شبکه‌های ارتباطی و ساختار سایبر- فیزیکی در سیستم‌های قدرت، حملات سایبری به تهدیدی جدی در شبکه‌ی برق تبدیل‌ شده‌است. برهم­کنش شبکه‌های ارتباطی (لایه سایبری) و شبکه‌های برق (لایه فیزیکی)، فرایند تخمین حالت سیستم‌های قدرت را نسبت به حملات سایبری آسیب‌پذیر کرده‌است. در این مقاله، مسئله‌ی تشخیص حمله‌ی تزریق داده‌ی غلط (‌FDI) در شبکه‌ی برق با در‌‌نظر‌‌‌گرفتن اندازه‌گیری‌های انجام‌شده توسط واحد اندازه‌گیری فازور (PMU) و تخمین دینامیکی متغیرهای حالت سیستم توسط تخمین‌گر کالمن مورد بحث قرارگرفته ‌است. حمله‌ی موردنظر به کانال‌های ارتباطی بین PMU و تخمین‌گر حالت صورت می‌گیرد. نشان داده ‌شده ‌است به‌دلیل ماهیت هوشمند حمله­ی FDI طراحی‌شده، آشکارساز  که کارایی خوبی برای تشخیص سایر انواع حملات سایبری دارد، قادر به تشخیص این نوع حمله نیست. در مقابل روش ارائه‌شده که از آشکارساز فاصله اقلیدسی و فیلتر کالمن استفاده می­کند، کارایی خوبی در تشخیص حمله­ی FDI از خود نشان می­دهد. اگر مهاجم با الگوریتمی پیشرفته و بر اساس اطلاعاتی که از شبکه و پارامترهای آن دارد، حمله را به‌گونه‌ای طراحی کند که در چند PMU به‌طور جزئی تزریق داده غلط انجام شود، آشکارساز طراحی‌شده قادر خواهد‌بود این حمله را به‌‌سرعت تشخیص دهد. احتمال تشخیص نادرست به‌دلیل اثر نویز کمتر از 1 درصد است. تأثیر حمله‌ی FDI بر تخمین‌ حالت سیستم و کارایی روش موردمطالعه در تشخیص حمله در سیستم استاندارد 14 باسه ‌IEEE نشان داده‌ شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of False Data Injection Attack in PMU-based Power Grid Using Kalman Filter

نویسندگان [English]

  • B. Homaei 1
  • S. Abazari 1
  • M. Barkhordari Yazdi 2
1 Faculty of Technical and Engineering, University of shahrekord, shahrekord, Iran
2 Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Cyber-attacks have become a serious threat to the power grid by expanding the use of communication networks and cyber-physical systems in power systems. due to the connection between communication networks (cyber layer) and Power Grids (physical layer), state estimation of power systems is vulnerable to cyber- attacks. In this paper, state estimation in the power system without any cyber-attacks has occurred, then the detection of false data injection attack power grid when the measurements made by phasor measurement unit (PMU), and the dynamic estimation of the system state variables are estimated by Estimator Kalman. The attack is applied to the communication channels between the PMU and the state estimator. The proposed method which is based on the Kalman filter and the Euclidean distance detector has a good performance in detection of complex attacks such as a false data injection attack. The effectiveness of the proposed method is shown by simulating false data injection attacks on the IEEE 14-bus system. The impact of the FDI attack on the state estimation system and the effectiveness of the proposed method is shown detection of attacks in an IEEE 14-bus system is shown.

کلیدواژه‌ها [English]

  • Cyber-attacks
  • false data injection (FDI) attack
  • phasor measurement unit (PMU)
  • kalman filter
[1]      سعید اباذری، مجتبی برخورداری یزدی و عباس عرب ‌دردری، «طراحی کنترل‌کننده مقاوم SVC مبتنی بر WAMS با در نظر گرفتن نامعینی تأخیر زمانی سیگنال‌های راه دور»، مجله مهندسی برق، دوره 45، دانشگاه تبریز، 1394.
[2]      G. Liang, J. Zhao, F. Luo, S. Weller, and Z. Y. Dong, “A review
 of false data injection attacks against modern power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1630-1638, 2017.
[3]      T. Chen, “Stuxnet, the real start of cyber warfare? [editor’s note],” IEEE Network, vol. 24, no. 6, pp. 2–3, 2010.
[4]      Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric power grids,” ACM Transactions on Information and System Security(TISSEC), vol. 14, no. 1, pp. 13, 2011.
[5]      Z. Li, M. Shahidehpour and F. Aminifar, “Cybersecurity in Distributed Power Systems,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1367-1388, 2017.
[6]      G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015 Ukraine blackout implications for false data injection attacks,” IEEE Trans. Power Systems, vol. 32, no. 4, pp. 3317-3318, 2017.
[7]      NCCIC/ICS-CERT, Cyber-attack against Ukrainian critical infrastructure, released 20 June 2016, https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01.
[8]      A. Anwar, A.N. Mahmood, and Z. Tari, “Identification of vulnerable node clusters against false data injection attack in an AMI based Smart Grid,” Information Systems, vol. 53, pp. 201–212, 2015.
[9]      T.T. Kim and H.V. Poor, “Strategic protection against data injection attacks on power grids,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 326-333, 2011.
[10]      X. Liu, Z. Li and Z. Li, Impacts of bad data on the PMU based line outage detection. arXiv preprint arXiv:1502.04236, 2015, http://arxiv.org/abs/1502.04236.
[11]      Y. Guo, W. Wu, B. Zhang, and H. Sun, “An efficient state estimation algorithm considering zero injection constraints,” IEEE Transactions on Power Systems, vol. 28, no.3, pp. 2651-2659, 2013.
[12]      M. Risso, A. J. Rubiales, and P. A. Lotito, “Hybrid method for power system state estimation,” IET Generation, Transmission & Distribution, vol. 9, no.7, pp. 636-643, 2015.
[13]      S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber–physical system security for the electric power grid,” Proceedings of the IEEE, vol. 100, no. 1, pp. 210-224, 2012.
[14]      Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False data injection attacks against state estimation in wireless sensor networks,” in 2010 49th IEEE Conference on Decision and Control (CDC), pp. 5967-5972, 2010.
[15]      B. Brumback and M. Srinath, “A chi-square test for fault-detection in kalman filters,” IEEE Transactions on Automatic Control, vol. 32, no. 6, pp. 552-554, 1987.
[16]      Y. Mo and B. Sinopoli, False data injection attacks in cyber physical systems. In First Workshop on Secure Control Systems, 2010.
[17]      K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and attacks including false data injection attack in smart grid using Kalman filter,” IEEE Transactions on Control of Network Systems, vol. 1, no. 4, pp. 370-379, 2014.
[18]      X. Bian, X. R. Li, H. Chen, D. Gan, and J. Qiu, “Joint estimation of state and parameter with synchrophasors—Part I: State tracking,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1196–1208, 2011.
[19]      G. N. Korres and N. M. Manousakis, “State estimation and observability analysis for phasor measurement unit measured systems,” IET Generat., Transmiss. Distrib, vol. 6, no. 9, pp. 902–913, Sep. 2012.
[20]       J. Zhang, G. Welch, G. Bishop, and Z. Huang, “A two-stage Kalman filter approach for robust and real-time power system state estimation,” IEEE Trans. Sustainable Energy, vol. 5, no. 2, pp. 629–636, Apr. 2014.
[21]      S. Sarri, L. Zanni, M. Popovic, J.-Y. Le Boudec, and M. Paolone, “Performance assessment of linear state estimators using synchrophasor measurements,” IEEE Trans. Sustain. Energy, 2016.
[22]      R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.
[23]      J. P. Hespanha, Linear Systems Theory. Princeton university press, 2009.
[24]      L.Hu, W.Zidong and N.Wasif, “Security analysis of stochastic networked control systems under false data injection attacks,” UKACC 1th International Conference on. IEEE, 2016.
[25]      W. J. Dixon and F. J. Massey, “Introduction to statistical analysis,” McGraw-Hill New York, 1969, vol. 344.
[26]      R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, Feb. 2011. 
[27]      G. N. Korres and N. M. Manousakis, “State estimation and bad data processing for systems including PMU and SCADA measurements,” Electr. Power Syst. Res., vol. 81, no. 7, pp. 1514–1524, 2011.
[28]      سهیل مرادی، رضا محمدی چبنلو و نوید تقی‌زادگان کلانتری، «مکانیابی بهینه واحدهای اندازه‌گیر فازوری برای مکان‌یابی خطا در شبکه قدرت با در نظر گرفتن باس‌های تزریق صفر و خروج تکی خطوط»، مجله مهندسی برق، دوره 46، دانشگاه تبریز، 1395.