مدیریت دمای پویا برای سیستم‌های چندهسته‌ای با کنترل فرکانس پردازنده و سرعت فن

نویسندگان

1 دانشکده مهندسی کامپیوتر - دانشگاه صنعتی شاهرود

2 دانشکده مهندسی برق و رباتیک - دانشگاه صنعتی شاهرود

چکیده

طراحان ریزپردازنده‌ها از طراحی سیستم‌های چندهسته‌ای بر روی یک تراشه برای افزایش توان محاسباتی آن‌ها بهره می‌برند. افزودن تعداد هسته‌ها، افزایش چگالی توان مصرفی و در پی آن افزایش دما را به‌دنبال دارد. برای کنترل و مدیریت دما، روش‌های واکنشی و فعال معرفی شده‌اند. برخلاف روش‌های واکنشی که بر اساس آستانه گذاری عمل می‌کنند، روش‌های فعال با بهره‌گیری از یک مدل پیش‌بینی دما، مدیریت دما را انجام می‌دهند. در این مقاله برای مدیریت دما، مدلی برای پیش‌بینی دمای آینده و مدلی برای کنترل دما پیشنهاد شده و از دو شبکه عصبی پرسپترون چندلایه‌ای برای تحقق آن‌ها استفاده شده است. برای آموزش هر یک از مدل‌ها، مجموعه داده مناسب فراهم شده است. در این مجموعه داده تعدادی از ویژگی‌ها با استفاده از حسگرها و سنجه‌های سیستم و دیگر ویژگی‌ها با پردازش‌های پیشنهادی فراهم شده‌اند. در این راستا، برای پیش‌بینی دما، ویژگی‌های سابقه‌ای پیشنهاد شده‌اند. ویژگی‌های مناسب برای پیش‌بینی دما، با روش انتخاب ویژگی بر پایه اطلاعات متقابل و ویژگی‌های مناسب برای مدل کنترلی با بهره‌گیری از الگوریتم ژنتیک مبتنی بر رتبه‌بندی نامغلوب، انتخاب شده‌اند. نتایج نشان می‌دهند خطای مدل پیش‌بینی برای فاصله‌های مختلف زمانی حدود 0.5 درجه سانتی‌گراد است و خطای مدل کنترل دما، در تعیین مقدار فرکانس پردازنده و سرعت فن، به‌ترتیب 2 و 0.6 درصد است.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic Thermal Management by Controlling CPU Frequency and Fan Speed

نویسندگان [English]

  • J. Mohebbi Najm Abad 1
  • A. Soleimani 2
1 Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
2 Faculty of Electrical and Robotics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Microprocessor designers use the design of multicore systems on a chip to increase their computing power. Adding the number of cores leads to an increase in the power density, followed by enhancement of temperature. Reactive and proactive approaches are two sets of the methods for managing the temperature. Unlike the reactive methods that act based on threshold temperature, proactive approaches utilize a thermal prediction model in thermal management. In this paper, two multilayer perceptron neural networks has been used for thermal prediction and temperature control. An appropriate dataset is provided for training each model. This dataset consists of some features that are read by sensors and measurement tools and new features that are produced by proposed processes. In this regard, historical features are suggested for thermal model. Proper features of thermal model are selected by using feature selection based on mutual information. The temperature is controlled by setting the processor frequency and fan speed. The features of control model are selected by non-dominated sorting genetic algorithm. The error of thermal model for different time distances is about 0.5 °C. The thermal control model has respectively 2% and 0.6% errors in determining the processor frequency and fan speed.

کلیدواژه‌ها [English]

  • Dynamic thermal management
  • thermal prediction
  • feature selection
  • multilayer perceptron
  • temperature control
[1] J. Kong, S. W. Chung and K. Skadron, “Recent thermal management techniques for microprocessors,” ACM Computing Surveys (CSUR), vol. 44, p. 13, 2012.
[2] R. Cochran and S. Reda, “Thermal prediction and adaptive control through workload phase detection,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 18, no. 1, p. 7, 2013.
[3] I. Yeo and E. J. Kim, “Temperature-aware scheduler based on thermal behavior grouping in multicore systems,” Conference on Design, Automation and Test in Europe, pp. 946-951, 2009.
[4] A. K. Coskun, T. S. Rosing and K. C. Gross, “Proactive temperature balancing for low cost thermal management in MPSoCs,” IEEE/ACM International Conference on Computer-Aided Design, pp. 250-257, 2008.
[5] A. K. Coskun, T. S. Rosing and K. C. Gross, “Utilizing predictors for efficient thermal management in multiprocessor SoCs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1503-1516, 2009.
[6] G. Liu, M. Fan and G. Quan, “Neighbor-aware dynamic thermal management for multi-core platform,” Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 187-192, 2012.
[7] D. Shin, S.W. Chung, E.Y. Chung and N. Chang, “Energy-optimal dynamic thermal management: Computation and cooling power co-optimization,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3, pp.340-351, 2010.
[8] S. Sharifi, R. Ayoub and T. S. Rosing, “Tempomp: Integrated prediction and management of temperature in heterogeneous mpsocs,” Conference on Design, Automation and Test in Europe, pp. 593-598, 2012.
[9] Z. Liu, T. Xu, S. X. D. Tan and H. Wang, “Dynamic thermal management for multi-core microprocessors considering transient thermal effects,” In Design Automation Conference (ASP-DAC), pp. 473-478, 2013.
[10] V. Hanumaiah and S. Vrudhula, “Energy-efficient operation of multicore processors by DVFS, task migration, and active cooling,” IEEE Transactions on Computers, vol .63, no. 2, pp. 349-360, 2014.
[11] P. Kumar and D. Atienza, “Neural network based on-chip thermal simulator,” Proceedings of Circuits and Systems (ISCAS), pp. 1599-1602, 2010.
[12] A. Vincenzi, A. Sridhar, M. Ruggiero and D. Atienza, “Fast thermal simulation of 2D/3D integrated circuits exploiting neural networks and GPUs,” In Proceedings of the 17th IEEE/ACM international symposium on low-power electronics and design, pp. 151-156, 2011.
[13] Y. Ge, Q. Qiu and Q. Wu, “A multi-agent framework for thermal aware task migration in many-core systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 10, pp. 1758-1771, 2012.
[14] M. Stockman, M. Awad, H. Akkary and R. Khanna, “Thermal status and workload prediction using support vector regression,” International Conference on Energy Aware Computing, pp. 1-5, 2012.
[15] M. Zaman, A. Ahmadi and Y. Makris, “Workload characterization and prediction: A pathway to reliable multi-core systems,” International On-Line Testing Symposium (IOLTS), pp. 116-121, 2015.
[16] D. Li, R. Ge, and K. Cameron, “System-level, Unified In-band and Out-of-band Dynamic Thermal Control,” In International Conference Parallel Processing (ICPP), pp. 131-140, 2010.
[17] R. Ayoub, K. Indukuri, and T. S. Rosing, “Temperature aware dynamic workload scheduling in multisocket cpu servers,” IEEE transactions on Computer-aided design of integrated circuits and systems, vol. 30, no. 9, pp. 1359-1372, 2011.
[18] M. Chhablani, I. Koren and C. M. Krishna, “Online Inertia-Based Temperature Estimation for Reliability Enhancement,” Journal of Low Power Electronics, vol. 12, no. 3, pp. 159-171, 2016.
[19] A. Kumar, L. Shang, L.S. Peh and N. K. Jha, “HybDTM: a coordinated hardware-software approach for dynamic thermal management,” Design Automation Conference, pp. 548-553, 2006.
[20] S. J. Lu, R. Tessier and W. Burleson, “Dynamic On-Chip Thermal Sensor Calibration Using Performance Counters,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 6, pp. 853-866, 2014.
[21] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaran-Arayanan and D. Tarjan, Temperature aware microarchitecture: Extended discussion and results, Technical Report CS-2003-08, University of Virginia, Dept. of Computer Science, 2003.
[22] جواد محبی نجم‌آباد، علی سلیمانی، «پیش‌بینی دما در سیستم‌های چند هسته‌ای با خوشه‌بندی عامل‌های مؤثر بر دما»، چهارمین کنفرانس ملی فناوری اطلاعات، کامپیوتر و مخابرات، تیر 1396.
[23] J. M. N. Abad, B. Salami, H. Noori, A. Soleimani and F. Mehdipour, “A neuro-fuzzy fan speed controller for dynamic thermal management of multi-core processors,” In Proceedings of the 11th ACM Conference on Computing Frontiers, p. 29, 2014.
[24] J. M. N. Abad and A. Soleimani, “A neuro-fuzzy fan speed controller for dynamic management of processor fan power consumption,” In Swarm Intelligence and Evolutionary Computation (CSIEC), pp. 148-153, 2016.
[25] H. Peng, F. Long and C. Ding, “Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on pattern analysis and machine intelligence, vol. 27, no. 8, pp. 1226-1238, 2005.
[26] فرید کربلایی، حمیدرضا شعبانی، رضا ابراهیم‌پور، «ارزیابی برون‌خط پایداری گذرا به‌وسیله تعیین دقیق CCT با استفاده از شبکه عصبی با ورودی‌های مبتنی بر توابع انرژی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، صفحه 285-277، بهار 1395.
[27] مرتضی به‌نام، حسین پورقاسم، «شناسایی صرع بر اساس بهینه‌سازی ویژگی‌های ادغامی تبدیل هارتلی با مدل ترکیبی MLP و GA همراه با استراتژی یادگیری ممتیک»، مجله مهندسی برق دانشگاه تبریز، جلد 25، شماره 4، صفحه 67-51، زمستان 1394.
[28] S. Haykin, “Neural Networks and Learning Machine,” (3th edition), 2009.
[29] K. Deb, A. Pratab, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGAII,” IEEE transactions on evolutionary computation, Vol. 6, No. 2, pp. 182-197, 2002.
[30] M. Mandal and A. Mukhopadhyay, “An improved minimum redundancy maximum relevance approach for feature selection in gene expression data,” Procedia Technology, vol. 10, pp. 20-27, 2013.
[31] H. Jung, P. Rong and M. Pedram, “Stochastic modeling of a thermally-managed multi-core system,” Design Automation Conference, pp. 728-733, 2008.