[1] C. Shannon, “Communication theory of secrecy system,” Bell System Technology Journal, vol. 28, pp. 656–715, 1990.
[2] K. M. Martin and D. R. Stinson, “Error decodable secret sharing and one-round perfectly secure message transmission for general adversary structures,” Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences, vol. 3, pp. 65-86, 2011.
[3] W. Meier and O. Staffelbach, “Fast correlations attacks on certain stream ciphers,” Journal of Cryptology, Springer, pp. 159-176, 1989.
[4] M. Zobeiri and B. Mazloom-Nezhad Maybodi, “Introducing dynamic P-Box and S-Box based on modular calculation and key encryption for adding to current cryptographic systems against the linear and differential cryptanalysis,” ARPN Journal of Engineering and Applied Sciences, vol. 12, pp. 856-862, 2017.
[5] T. Siegenthaler, “Correlation-immunity of nonlinear combining functions for cryptographic applications,” IEEE Transactions on Information Theory IT, pp. 776–780, 1984.
[6 ] M. Grangetto, E. Magli and G. Olmo, “Multimedia selective encryption by means of randomized arithmetic coding,” IEEE Transactions on Multimedia, vol. 8, pp. 905–917 2006.
[7] C. Monico, J. Rosenthal and A. Shokrollahi, “Using low density parity check codes in the McEliece cryptosystem,” Proc. IEEE International Symposium Information Theory, Italy, 2000.
[8] M. Baldi, F. Chiaraluce, R. Garello and F. Mininni, “Quasi-cyclic LDPC codes in the McEliece cryptosystem,” Proc. IEEE International Conference Communications, Glasgow, UK, pp. 951–956, 2007.
[9] M. Baldi and F. Chiaraluce, “Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes,” Proc. IEEE International Symposium Information Theory, Nice, France, pp. 2591–2595, 2007.
[10] M. Matsui, “Linear cryptanalysis method for DES cipher, ” Advances in Cryptology EUROCRYPT, Springer-Verlag, 1994.
[11] Biham and Shamir, “Differential cryptanalysis of DES-like cryptosystems,” Technical Report CS90-16, 1990.
[12] C. H. Kim, “Differential fault analysis of AES: toward Reducing number of faults,” Journal of Information Sciences, vol. 199, pp. 43–57, 2012.
[13] J. Kim, S. Hong and J. Lim, “Impossible differential cryptanalysis using matrix method,” Discrete Mathematics, pp. 988–1002, 2010.
[14] K. Sakiyama, Y. Li, M. Iwamoto and K. Ohta, “Information-theoretic approach to optimal differential fault analsysis,” IEEE Transactions on Information Forensics and Security, vol. 7, pp. 109-120, 2012.
[15] D. Coppersmith, “The data encryption standard (DES) and its strength against attacks,” IBM Journal of Research and Development, vol. 38, 1994.
[16] شهرام جمالی، عرفان آقایی کیاسرایی، « بهبود حمله مکعبی کانال جانبی بر روی الگوریتمهای بلوکی »، مجله مهندسی برق دانشگاه تبریز, دوره 45، شماره 4، صفحه 78-69، 1394.
[17] P. Xu and H. Jin, “Public-key encryption with fuzzy keyword search: a provably secure scheme under keyword guessing attack,” IEEE Transactions on Computer, vol. 62, pp. 2266–2278, 2013.
[18] M. Esmaeili and T. A. Gulliver, “A secure code based cryptosystem via random insertions, deletions, and errors,” IEEE Communications, vol. 20, pp. 870–873, 2016.
[19] T. N. R. Rao, “Joint encryption and error correction schemes,” Proc. Int. Symp.Computer Architecture, pp. 240–241, 1984.
[20] T. R. N. Rao and K. H. Nam, “Private-key Algebraic-code encryption,” IEEE Transactions on IT, vol. 4, pp. 829-833,1987.
[21] R. Struik, J. Tilburg, “The Rao–Nam scheme is insecure against a chosen plaintext attack”, Proc. CRYPTO, pp. 445–457, 1988.
[22] H. M. Sun, S. P. Shieh, ‘On private-key cryptosystems based on product codes,” Proc. 3rd Australasian Conference Information Security and Privacy, pp. 68–79, 1998.
[23] A. I. Barbero and Ytrehus, “Modifications of the Rao–Nam cryptosystem,” Proc. International Conference Coding Theory Cryptography and Related Areas, pp. 1–13, 1998.
[24] A. I. Barbero, J. G. Tena, “A Rao–Nam like cryptosystem with product codes,” Proc. 6th International Conference Finite Fields and Applications on Coding Theory, pp. 22–36, 2001.
[25] A. Sobhi Afshar, T. Eghlidos and M. R. Aref, “Efficient secure channel coding based on quasi-cyclic low-density parity check codes,” IET Communication, vol. 3, pp. 279–292, 2009.
[26] R. Hooshmand, T. Eghlidos and M. R. Aref, “Improving the Rao–Nam secret key cryptosystem using regular EDF-QC-LDPC codes,” ISeCure, vol. 3, pp. 3–14, 2012.
[27] M. Esmaeili, M. Dakhilalian and T. A. Gulliver, “New secure channel coding scheme based on randomly punctured quasi-cyclic low-den
[28] M. Esmaeili and T. A. Gulliver “Joint channel coding-cryptography based on random insertions and deletions in QC-LDPC codes,” IET Communication, vol. 9, pp. 1555–1560, 2015.
[29] R. Hooshmand, M. R. Aref and T. Eghlidos, “Secret key cryptosystem based on non-systematic polar codes,” Wirel. Pers. Communication, vol. 84, pp. 1345–1373, 2015.
[30] پرهام دری، علی قیاسیان و حسین سعیدی" طراحی و پیاده سازی رمزنگار AES در بستر FPGA برای خطوط پرسرعت" مجله مهندسی برق دانشگاه تبریز، دوره 44، شماره 1، صفحه 153-167، 1395.
[31] L. Q. Liu Z, J. Dai and A. M. Sun X, “A new kind of double image encryption by using a cutting spectrum in the 1-D fractional Fourier transform domains,” Opt. Express, vol. 282, pp. 1536-1540, 2009.
[32] K. Challita and H. Farhat, “Combining steganography and cryptography: new directions,” International Journal on New Computer Architectures and Their Applications, vol. 1, pp. 199-208, 2011.