[1] رمضان هاونگی، «موقعیتیابی ربات بر اساس فیلتر ذرهای بهبود یافته با فیلتر کالمن گروهی هوشمند و گام MCMC»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 4، 1395.
[2] J. Fontecha et al., "Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records," Personal and Ubiquitous Computing, vol. 17, no. 6, pp. 1073-1083, 2013.
[3] D. A. James, "The application of inertial sensors in elite sports monitoring," in the Engineering of Sport 6: Volume 3: Developments for Innovation, Springer New York, pp. 289-294, 2006.
[4] P. Gupta and T. Dallas, "Feature selection and activity recognition system using a single triaxial accelerometer," IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1780-1786, 2014.
[5] J. S. Wang and F.C. Chuang, "An accelerometer-based digital pen with a trajectory recognition algorithm for handwritten digit and gesture recognition," IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2998-3007, 2012.
[6] O. D. Lara and M.A. Labrador, "A survey on human activity recognition using wearable sensors," IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, 2013.
[7] A. Wang et al., "A comparative study on human activity recognition using inertial sensors in a smartphone," IEEE Sensors Journal, vol. 16, no. 11, pp. 4566-4578, 2016.
[8] O. D. Lara et al., "Centinela: A human activity recognition system based on acceleration and vital sign data," Pervasive and Mobile Computing, vol. 8, no. 5, pp. 717-729, 2012.
[9] J. Xu et al., "Personalized active learning for activity classification using wireless wearable sensors," IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 5, pp. 865-876, 2016.
[10] A. Bulling, U. Blanke and B. Schiele, "A tutorial on human activity recognition using body-worn inertial sensors," ACM Computing Surveys, vol. 46, no. 3, pp. 1-33, 2014.
[11] S. J. Preece et al., "A comparison of feature extraction methods for the classification of dynamic activities from accelerometer Data," IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 871-879, 2009.
[12] D. Fuentes et al., "Online motion recognition using an accelerometer in a mobile device," Expert Systems with Applications, vol. 39, no. 3, pp. 2461-2465, 2012.
[13] A. M. Khan et al., "A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer," IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 5, pp. 1166-1172, 2010.
[14] L. Tong, Q. Song, Y. Ge and M. Liu, "HMM-based human fall detection and prediction method using tri-axial accelerometer," IEEE Sensors Journal, vol. 13, no. 5, 1849-1856, 2013.
[15] L. Kai-Chun and C. Chia-Tai, "Significant change spotting for periodic human motion segmentation of cleaning tasks using wearable sensors," Sensors, vol. 17, no.1, 2017.
[16] H. Junker, O. Amft, P. Lukowicz, G. Troster, "gesture spotting with body-worn inertial sensors to detect user activities," pattern Recognition, vol. 41, no. 6, pp. 2010-2024, 2008.
[17] J. L. Reyes Ortiz et al., "Transition-aware human activity recognition using smartphones," Neurocomputing, vol. 171, pp. 754-767, 2016.
[18] G. Panahandeh, N. Mohammadiha, A. Leijon and P. Händel, "Continuous hidden markov model for pedestrian activity classification and gait analysis," IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 5, pp. 1073-1083, 2013.
[19] H.-K. Lee, J.H. Kim, "An HMM-based threshold model approach for gesture recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 961-973, 1999.
[20] J. S. Wang, C. W. Lin, Y. T. C. Yang and Y. J. Ho, "walking pattern classification and walking distance estimation algorithms using gait phase information," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2884-2892, 2012.
[21] Z. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, "A new multi-position calibration method for MEMS inertial a navigation systems," Meas. Sci. Technol, vol. 18, no. 7, pp. 1897–1907, 2007.
[22] M. J. Caruso, "Applications of magnetoresistive sensors in navigation systems," Sensors and Actuators, SAE SP-1220, pp. 15–21, 1997.
[23] M. Pedley, "High-Precision Calibration of a Three-Axis Accelerometer," document AN4399, Freescale Semicond., Austin, TX, USA, 2015.
[24] S. O. H. Madgwick, A. J. L. Harrison and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” in Proceedings of the IEEE International Conference on in Rehabilitation Robotics, 2011, pp. 1-7.
[25] H. J. Luinge, P. H. Veltink and C. T. Baten, “Estimating orientation with gyroscopes and accelerometers,” Technology and Health Care, vol. 7, no. 6, pp. 455-459, 1999.
[26] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee and M. J. Zyda, “An extended kalman filter for quaternion-based orientation estimation using marg sensors,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 2003-2011.
[27] J. Luinge and H. P. Veltink, "Measuring orientation of human body segments using miniature gyroscopes and accelerometers," Medical and Biological Engineering and Computing, vol. 43, no. 2 p. 273-282, 2005.
[28] M. Haid and J. Breitenbach, “Low cost inertial orientation tracking with Kalman filter,” Applied Mathematics and Computation, vol. 153, no. 2, pp. 567-575, 2004.
[29] M. Sepahvand, F. Abdali-Mohammadi and F. Mardukhi, "Evolutionary Metric-Learning-Based Recognition Algorithm for Online Isolated Persian/Arabic Characters, Reconstructed Using Inertial Pen Signals," IEEE Transactions on Cybernetics, vol. PP, no.99, pp. 1-13, 2016.
[30] N. Wang, E. Ambikairajah, N. H. Lovell and B. G. Celler, “Accelerometry based classification of walking patterns using time-frequency analysis,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4899–4902, 2007.
[31] M. Sekine, T. Tamura, M. Akay, T. Fujimoto, T. Togawa and Y. Fukui, “Discrimination of walking patterns using wavelet-based fractal analysis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 10, no. 3, pp. 188-196, 2002.
[32] M. S. H. Aung et al., “Automated Detection of Instantaneous Gait Events Using Time Frequency Analysis and Manifold Embedding,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 6, pp. 908-916, 2013.
[33] J. Kennedy and R. C. Eberhart, "Particle swarm optimization," IEEE Intenational Conference on Neural Networks, 1995, pp. 1942-1948.
[34] سیدمحمدرضا موسوی، محمد خویشه، احسان ابراهیمی، فلاح محمدزاده، «دستهبندی اهداف سوناری توسط الگوریتم بهینهساز ازدحام ذرات با گروههای مستقل»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 1، 1396.
[35] A. Wang, G. Chen, J. Yang, S. Zhao and C. Y. Chang, "A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone," in IEEE Sensors Journal, vol. 16, no. 11, pp. 4566-4578, 2016.