[1] G. Chéron, I. Laptev, and C. Schmid, “P-cnn: Pose-based cnn features for action recognition,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 3218–3226, 2015.
[2] I. Atmosukarto, N. Ahuja, and B. Ghanem, “Action recognition using discriminative structured trajectory Groups,” Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on. pp. 899-906. IEEE, 2015.
[3] S. Zaidenberg, B. Boulay, and F. Brémond, “A generic framework for video understanding applied to group behavior recognition,” In Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference on, pp. 136-142. IEEE, 2012.
[4] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,” ACM Comput. Surv., vol. 43, no. 3, pp. 1–43, Apr. 2011.
[5] G. Johansson, “Visual motion perception,” Sci. Am., vol. 232, pp. 76–88, 1975.
[6] H. Fujiyoshi, A. J. Lipton, and T. Kanade, “Real-time human motion analysis by image skeletonization,” IEICE Trans. Inf. Syst., vol. 87, no. 1, pp. 113–120, 2004.
[7] C. Zou and Z. Liu, “Behavior Classification Method Based on Skeleton Model from Video Images,” In Computer Science and Information Technology, 2008. ICCSIT'08. International Conference on, pp. 309-312. IEEE, 2008.
[8] E. Yu and J. K. Aggarwal, “Human action recognition with extremities as semantic posture representation,” in Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on, pp. 1–8, 2009.
[9] M. Z. Uddin, “Human Activity recognition using body joint-angle features and hidden markov model,” ETRI J., vol. 33, no. 4, pp. 569–579, Aug. 2011.
[10] L. Xia, C.-C. Chen, and J. K. Aggarwal, “View invariant human action recognition using histograms of 3d joints,” in Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on, pp. 20–27, 2012.
[11] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition by representing 3d skeletons as points in a lie group,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595, 2014.
[12] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition,” J. Vis. Commun. Image Represent., vol. 25, no. 1, pp. 24–38, Jan. 2014.
[۱۳] امیر فرید امینیان مدرس، بازشناسی و تحلیل فعالیت انسان در تصاویر ویدیویی چند دیدی، رساله دکتری، دانشگاه علم و صنعت ایران، ص. ۶۸-۵۳، خرداد ۱۳۹۳.
[14] M. Jiang, J. Kong, G. Bebis, and H. Huo, “Informative joints based human action recognition using skeleton contexts,” Signal Process. Image Commun., vol. 33, pp. 29–40, Apr. 2015.
[15] X. Bai, L. J. Latecki, and W.-Y. Liu, “Skeleton pruning by contour partitioning with discrete curve evolution,” Pattern Anal. Mach. Intell. IEEE Trans. On, vol. 29, no. 3, pp. 449–462, 2007.
[16] K. Liu, Y. S. Huang, and C. Y. Suen, “Identification of fork points on the skeletons of handwritten Chinese characters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 10, pp. 1095–1100, 1999.
[17] A. B. Iraola, “Skeletonization, skeleton pruning and simple skeleton graph construction example in Matlab.,” 2009.