[1] B. Gong, K. Grauman and F. Sha,“Reshaping visual datasets for domain adaptation”, Proceedigns of the Advances in Neural Information Processing Systems, vol. 26, pp. 1286-1294, 2013.
[2] B. Gong, K. Grauman and F.Sha, “Learning kernels for unsupervised domain adaptationwith applications to visual object recognition”, Int J Comput Vision vol. 109, pp. 3–27, 2014
[3] Jolliffe I, Principal component analysis, Wiley, vol. 2, pp. 433-459, 2002.
[4] طاهره زارع بیدکی، محمدتقی صادقی، «بهینهسازی وزنها در کرنل مرکب برای طبقهبند مبتنی بر نمایش تنک کرنلی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1059-1072، 1396.
[5] B. Gong, K. Grauman and F. Sha, “Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation”, Proceedings of the International Conference on Machine Learning, vol. 28, no. 1, pp. 222-230, 2013.
[6] L. Duan L, I. W. Tsang, D. Xu and S. J. Maybank, “Domain transfer SVM for video concept detection”,IEEE Conference on computer vision and pattern recognition, pp. 1375-1381, 2009.
[7] L. Bruzzone and M. Marconcini, “Domain adaptation problems: a DASVM classification technique and a circular validation strategy”, IEEE Trans Pattern Anal Mach Intell, vol. 32, no. 5, pp. 770–787, 2010.
[8] M. Long, J. Wang, G. Ding, S. J. Pan and P. Yu, “Adaptation regularization: a general framework for transfer learning”, IEEE Trans. Knowl. Data Eng, vol. 26, pp. 1076–1089, 2013.
[9] S. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang, “Domain adaptation via transfer component analysis”, IEEE Trans. Neural Netw, vol. 22, pp. 199–210, 2011.
[10] S. Si, D. Tao and B. Geng, “Bregman divergence-based regularization for transfer subspace learning”, IEEE Trans Knowl Data Eng, vol. 22, no. 7, pp. 929–942, 2010.
[11] B. Gong, Y. Shi, F. Sha and K. Grauman, “Geodesic flow kernel for unsupervised domain adaptation”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066-2073, 2012.
[12] M. Long, J. Wang, G. Ding, J. Sun and P. S. Yu, “Transfer joint matching for unsupervised domain adaptation”, IEEE conference on computer vision and pattern recognition, pp. 1410-1417, 2014.
[13] S. Satpal and S. Sarawagi, “Domain adaptation of conditional probability models via feature subsetting”, Proceedings of PKDD, vol. 4702, pp. 224-235. 2007.
[14] B. Quanz, J. Huan and M. Mishra, “Knowledge transfer with low-quality data: a feature extraction issue”, IEEE Trans Knowl Data Eng, vol. 24, no. 10, pp. 1789–1802, 2012.
[15] M. Long, J. Wang, G. Ding, J. Sun and S. YuPhilip, “Transfer feature learning with joint distribution adaptation”, IEEE international conference on computer vision, pp. 2200-2207, 2013.
[16] J. Tahmoresnezhad and S. Hashemi, “Visual domain adaptation via transfer feature learning”, KnowlInf Syst, vol. 50, no. 2, pp. 585-605, 2016.
[17] J. Tahmoresnezhad and S. Hashemi, “A generalized kernel-based random k-sample sets method for transfer learning”, Iran J Sci Technol Trans Electrical Eng, vol. 39, pp. 193-207, 2015.
[18] M. Belkin, P. Niyogi, V. Sindhwani, “Manifold regularization: a geometric framework for learning from labeled and unlabeled examples”, J. Mach. Learn. Res, vpl. 7, pp. 2399-2434, 2006.
[19] U. von Luxburg, “A tutorial on spectral clustering”, Stat. Comput, vol. 17, no. 4, pp. 395-416, 2007.
[20] B. Schӧlkopf, R. Herbrich and A. J. Smola, “A generalized representer theorem”, Proceedings of the Conference on Computational Learning Theory, pp. 416-426, 2001.
[21] K. Saenko, B. Kulis, M. Fritz and T. Darrell, “Adapting visual category models to new domains”, Proceedings of the European Conference on Computer Vision, pp. 213-226, 2010.
[22] G.Griffin, A. Holub and P. Perona, “Caltech-256 object category dataset”, Technical Report7694, 2007.
[23] J. J. Hull, “A database for handwritten text recognition research”, IEEE Trans. Pattern Anal. Mach. Intell, vol. 16, no. 5, pp. 550–554, 1994.
[24] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[25] S. A. Nene, S. K. Nayar and H. Murase, “Columbia object image library (COIL-20)”, Technical Report CUCS, 1996.
[26] T. Sim, S. Baker and M. Bsat, “The CMU pose, illumination, and expression (PIE) database”, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 53-58, 2002.
[27] مهرداد حیدری ارجلو، سید قدرات اله سیف السادات، مرتضی رزاز، «یک روش هوشمند تشخیص جزیره در شبکه توزیع دارای تولیدات پراکنده مبتنی بر تبدیل موجک و نزدیکترین k-همسایگی (kNN)»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحات 15-26، 1392.