محاسبه نرخ خرابی و ارزیابی قابلیت اطمینان سیستم فتوولتائیک به روش مونت‌کارلو با درنظرگرفتن شرایط آب و هوایی

نویسندگان

گروه مهندسی برق - دانشکده فنی و مهندسی - دانشگاه اصفهان

چکیده

در این مقاله، با توجه به رشد فزاینده استفاده از سیستم‌های فتوولتائیک در شبکه قدرت و اهمیت آنها، قابلیت اطمینان یک سیستم فتوولتائیک محاسبه شده‌است. در این راستا ابتدا  نرخ خرابی عناصر سیستم با استفاده از استاندارد Fides Guide و با درنظرگرفتن شرایط محیطی، شامل منحنی‌های تابش، دما و رطوبت محاسبه شده‌است. سپس عملکرد زیرسیستمهای یک سیستم فتوولتائیک از نگاه قابلیت اطمینان ارزیابی شده و قابلیت اطمینان کل سیستم با استفاده از شبیه‌سازی مونت‌کارلو، ارزیابی شده‌است. نتایج نشان می‌دهد، دما بیشترین تاًثیر را بر نرخ خرابی عناصر دارد. همچنین، نرخ خرابی کلید و خازن مبدل از دیگر عناصر بیشتر است. الگوریتم پیشنهادی برای نیروگاه فتوولتائیک 20 کیلووات در دانشگاه اصفهان اجرا شده‌است. نتایج شبیه‌سازی، توانایی الگوریتم پیشنهادی در تعیین دقیق قابلیت اطمینان سیستم را مشخص می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Failure Rate Calculation and Reliability Assessment of a PV System based on Monte-Carlo Simulation Considering Environmental Conditions

نویسندگان [English]

  • N. Shahidi Rad
  • M. Niroomand
  • R. Hooshmand
Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]

In this paper, regarding to the growing utilization of photovoltaic (PV) systems in power grid, reliability of a PV system is calculated. In this regard, using FIDES Guide and considering environmental conditions, i.e., irradiation, temperature and humidity, failure rate of each component is calculated. According to the failure/repair rates and also sub-system operations, the reliability of PV system is evaluated based on Monte-carlo simulation. The results show that the temperature has the greatest effect on failure rate of each component. The most failures are related to the IGBT and capacitor. The proposed algorithm is implemented on a 20-KW PV power plant of university of Isfahan. The results show the ability of suggested algorithm to determine the reliability of PV power plant with high accuracy.

کلیدواژه‌ها [English]

  • Photovoltaic
  • failure rate
  • repair rate
  • Fides guide standard
  • reliability
  • Monte Carlo
[1] Report on: “Key renewable trends”, International Energy Agency (IEA), 2016.
[2] Q. Zhou, C. Xun, Q. Dan, and S. Liu, “Grid-Connected PV inverter reliability considerations: A review”,16th International Conference on Electronic Packaging Technology (ICEPT), pp. 266-274, 2015.
[3] A. Ristow, M. Begovi, A. Pregelj, and A. Rohatgi, “Development of a methodology for improving photovoltaic inverter reliability”, IEEE Trans. on Industrial Electonics, vol. 55, no. 7, pp. 2581-2592, 2008.
[4] MIL-HDBK-217F, Military handbook-reliability prediction of electronic equipment, Department of defense, Washington DC, USA, 1995.
[5] J. W. Hans, “Revision of MIL-HDBK-217, Reliability prediction of electronicequipment”, Reliability and Maintainability Symposium (RAMS), 2010 Proceedings - Annual. 2010.
[6] IEC, Reliability datahandbook-Universal model for reliability prediction of electronics components, PCBs and equipment. 2004.
[7] FIDES Guide 2009 Edition: A Reliability Methodology for Electronic Systems. (Sep. 2010) [Online]. Available: www.fides-reliability.org.
[8] H. Valipour, M. FotuhiFirouzabad, G. Rezazadeh, and MR. Zolghadri, “Reliability comparison of two industrial AC/DC converters with resonant and non-resonant topologies”, 6th International Power Electronics Drive Systems and Technologies Conference (PEDSTC2015), pp. 430-435, 2015.
[9] M. Held and K. Fritz, “Comparison and evaluation of newest failure rate prediction models: FIDES and RIAC 217 Plus”, Microelectronics Reliability, vol. 49, pp. 967-971, 2009.
[10] S. E.DeLeon-Aldaco, H. Calleja, and J. A. Alquicira, “Reliability and mission profiles of photovoltaic systems: A FIDES approach”, IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2578-2586, 2015.
[11] K. Xie, Z. Jiang, and W. Li, “Effect of wind speed on wind turbine power converter reliability”, IEEE Transactions on Energy Conversion, vol. 27, no. 1, pp. 96-104, 2012.
[12] Y. Wang, P. Zhang, W. Li, “Reliability evaluation of grid-connected photovoltaic power systems”, IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 379-389, 2012.
[13] R. Hu, J. Mi, T. Hu, M. Fu, P. Yang, “Reliability research for PV system using BDD-based fault tree analysis”, IEEE International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), pp. 359-363, 2013.
[14] G. Zini, C. Mangeant, J. Merten, “Reliability of large-scale grid-connected photovoltaic systems”, Renewable Energy, vol. 36, no. 9, pp. 2334-2340, 2011.
[15] م. نیری‌پور، س. حسنوند، ح. فلاح‌زاده، "برنامهریزیتوسعه ظرفیت با درنظرگرفتن قابلیت اطمینان سیستم بهمنظورتبدیل شبکه توزیع موجود به ریزشبکه"، جله مهندسی برق دانشگاه تبریز، جلد 74 ،شماره 2 ،تابستان 6931، صفحه 761-774.
[16] M. Marzband, F. Azarinejadian, M. Savaghebi, and J. M. Guerrero “An Optimal Energy Management System for Islanded Microgrids Based on MultiperiodArtificialBee Colony Combined With Markov Chain”, IEEE Systems Journal, vol. 100, no. 99, pp. 1-11, 2015.
[17] F. HamzehAghdam, M. Abapour,“Reliability and cost analysis of multistage boost converters connected to PV panels”, IEEE journal of photovoltaics, vol. 6, no. 4, pp. 981-989, 2016.
[18] S. V. Dhople, A. Davoudi, A. D. Dominguez-Garcia, and P. L. Chapman, “A unified approach to reliability assessment of multiphase DC-DC converters in photovoltaic energy conversion systems”, IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 739-751, 2012.
[19] M. Theristis and I. A. Papazoglou, “Markovianreliability analysis of standalone photovoltaic systems incorporating repairs” IEEE journal of photovoltaics, vol. 4, no. 1, pp. 414-422,2013.
[20] J. Dong, F. Gao, X. Guan, Q. Zhai, and J. Wu, “Storage-Reserve sizing with qualified reliability for connected high renewable penetration micro-Grid”, Transactions on Sustainable Energy, vol. 7, no. 2, pp. 732-743, 2016.
[21] M. Piri, M. Niroomand, and R. Hooshmand, “A comprehensive reliability assessment of residential photovoltaic systems”, journal of renewable and sustainable energy, vol. 7, no. 5, pp. 1-19, 2015.
[22] P. S. Shenoy, K. A. Kim, B. B. Johnson and  P. T. Krein, “Differential power processing for increased energy production and reliability of photovoltaic systems”, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2968 - 2979, 2013.
[23] H. Farzin, M. Fotuhi-Firuzabad and M. Moeini-Aghtaie, “Reliability studies of modern distribution systems integrated with renewable generation and parking lots”, Transactions on Sustainable Energy, vol. 8, no. 1, pp. 431-440, 2017.
[24] P. D. Reigosa, H. Wang, Y. Yang, and F. Blaabjerg, “Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation”, IEEE Transactions on Power Electronics, vo. 31, no. 10, pp. 7171-7182, 2016.
[25] ا. فرجی، م.تورانداز کناری، م.سپاسیان،م.ستایش‌نظر، "ارزیابی احتمالاتی ولتاژ شبکه‌های توزیع فعال با درنظرگرفتن همبستگی بین واحدهای فتوولتائیک"، مجله مهندسی برق دانشگاه تبریز، آماده انتشار، 1396.
[26] R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems:Concepts and Techniques, 2nd Ed, Plenum Press, New York, 1992.