کنترل بهینه سلسله‌مراتبی سطح سوم ریزشبکه با استفاده از پخش پویای جمعیت در بازار پیش‌رو

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه بیرجند

چکیده

کنترل سلسله‌مراتبی، با تلفیقی از سیستم کنترل متمرکز و غیرمتمرکز، روش مناسبی برای کنترل ریزشبکه است. بهره‌برداری بهینه از ریزشبکه به لحاظ اقتصادی وظیفه سطح سوم کنترل سلسله‌مراتبی است. در مدل بازار با روش پرداخت یکنواخت، پخش بهینه اقتصادی توان، بر پایه تساوی منفعت حدی منابع کنترل‌پذیر ریزشبکه استوار است. برای پیاده‌سازی این تساوی در بازار لحظه‌ای پیش‌رو، از پخش پویای جمعیت استفاده شده است. سهم هر منبع از تقاضا، متناسب با میزان شایستگی آن منبع است. شایستگی هر منبع، به توان نامی، ضریب هزینه و ضریب جریمه تلفات ناشی از سهم منبع در تلفات ریزشبکه بستگی دارد. برای محاسبه ضریب جریمه، دو روش تحلیلی ژاکوبین و عددی مقایسه شده است. با محاسبه منفعت حدی توسط روش پویای پخش توان و اطلاع از قیمت بازار لحظه‌ای خرید و فروش شبکه توزیع، مسیر مبادله انرژی بین ریزشبکه و شبکه توزیع مشخص می‌شود. در این مقاله یک شبکه شعاعی 14 شینه با خطوط مقاومتی و پنج منبع کنترل‌پذیر متفاوت انتخاب شده است. مطابق فلوچارت، روشی مؤثر و بلادرنگ برای کنترل بهینه اقتصادی ریزشبکه در بازار لحظه‌ای پیش‌رو، با هدف بیشینه‌سازی منفعت ریزشبکه مطرح شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Tertiary Hierarchical Optimal Control of Microgrid by Dynamic Population Dispatch in a Day-ahead Market

نویسندگان [English]

  • H. R. Samadi
  • M. Ebadian
  • S. R. Goldani
Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
چکیده [English]

Hierarchical control, with compilation of centralized and decentralized control system, is a suitable to control a microgrid. Economically optimal operation is the main task of tertiary hierarchical control of microgrid. In the uniform-price auction model, the economic power dispatch is based on the same marginal utility of distributed energy resources (DER) of microgrid. To implement this condition in a day-ahead real-time market, dynamic population dispatch are used. The share of demand for each source is according to its fitness. The fitness function of each source depends on nominal power, cost factor and penalty factor duo to the role of each source in increasing/decreasing power losses of the microgrid. To calculate the penalty factor, jacobian analytical method and a numerical one are compared. By calculating the marginal utility (minimum bid price of microgrid) through the dynamic power distribution method, and knowing the real-time market purchase and sell price of the distribution network, the energy exchange path between the microgrid and the distribution network is determined. In this paper, a 14-bus radial network with resistive lines and five controllable sources has been simulated. According to the results, an effective and real-time approach to optimally control a microgrid in a day-ahead market with the aim of maximizing the benefits of the microgrid has been proposed.

کلیدواژه‌ها [English]

  • microgrid
  • hierarchical optimum control
  • economic dispatch
  • population dynamic dispatch with losses
[1] D. Olivares, A. Mehrizi-Sani, A. H. Etemadi, and …, “Trends in microgrid control,” IEEE Trans. on Smart Grid, vol. 5, no. 4, pp. 1905-1919, 2014.
[2] IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std. 1547, 2003.
[3] R. Firestone and C. Marnay, “Energy Manager Design for Microgrids,” Tech. Rep. Consortium for Electric Reliability Technology Solutions (CERTS), vol. 1, no. 2, pp. 15-22, 2005.
[4] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, 2012.
[5] A. Mehrizi-Sani and R. Iravani, “Potential-function based control of a microgrid in islanded and grid-connected models,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1883–1891, 2010.
[6] X. Sun, Y. S. Lee, and D. Xu, “Modeling, analysis, and implementation of parallel multi-converter system with instantaneous average-current sharing method,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 844–856, 2003.
[7] S. Sun, L. K. Wong, Y. S. Lee, and D. Xu, “Design and analysis of an optimal controller for parallel multi-inverter systems,” IEEE Trans. Circuit Syst. II, vol. 53, no. 1, pp. 56–61, 2006.
[8] J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, L. G. D. Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, 2011.
[9] J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla and L. G. D.  Vicuna, “Control strategy for flexible microgrid based on parallel line-interactive UPS systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 726-736, 2009.
[10] Q. C. Zhong, “Harmonic droop controller to reduce the voltage harmonics of inverters,” IEEE Trans. on Ind. Electron., vol. 60, no. 3, pp. 936-945, 2013.
[11] B. Marinescu and H. Bourles, “Robust predictive control for the flexible coordinated secondary voltage control of large scale power system,” IEEE Trans. Power Syst., vol. 14, no. 4, pp. 1262–1268, 1999.
[12] B. Jie, T. Tsuji, K. Uchida, “An analysis of market mechanism and bidding strategy for power balancing market mixed by conventional and renewable energy,” European Energy Market International Conference., pp. 1-6, 2017.
[13] K. D. Brabandere, K. Vanthournout, J. Driesen, G. Deconinck, and R. Belmans, “Control of microgrids,” in Proc. IEEE Power Engineer. Soc. General Meet., no. 1, pp. 1–7, 2007.
[14] A. Pantoja and N. Quijano, “A population dynamics approach for the dispatch of distributed generators,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4559–4567, 2011.
[15] E. M. Nava, C. A. Macana and N. Quijano, “Dynamic Population Games for Optimal Dispatch on Hierarchical Microgrid Control,” IEEE Trans. on System, Man and Cybernetics, vol. 44, no. 3, pp. 306-317, 2014.
[16] J. A. Navarro, A. A. Bayod, J. M. Yusta-Loyo, J. L. Bernal-Agustín, R. Dufo-López, S. Artal-Sevil and A. Coronado-Mendoza, “Local electrical market based on a Multi-agent system,” IEEE 14th International Conference on Networking, Sensing and Control, pp. 239-244, 2017.
[17] P. Tian, X. Xiao, K. Wang and R. Ding, “A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation,” IEEE Trans. on Smart Grid, vol. 7, no. 5, pp. 2230-2241, 2016.
[18] E. Amicarelli, Q. T. Tran and S. Bacha, “Multi-agent system for day-ahead energy management of microgrid,” IEEE 18th European Conference on Power Electronics and Applications, pp. 1-10, 2016
[19] M. R. Sandgani and S. Sirouspour, “Energy management in a network of grid-connected microgrids/nanogrids using compromise programming,” IEEE Trans. on Smart Grid, pp. 1-12, 2016.
[20] م. نوشیار، «توزیع اقتصادی دینامیکی توان در سیستم قدرت با الگویتم توسعه‌یافته جستجوی هارمونی». مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحه 1265-1276، 1395.
[21] س. ک. پهنه کلائی، م. رحیمیان، «مدیریت انرژی نیروگاه مجازی بر پایه بهینه‌سازی مقاوم با پایش پیشامدهای ریزشبکه: مطالعه موردی خروج تکی خط». مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحه 249-261، 1396.
[22] M. Rouholamini and M. Mohammadian, “Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage,” Renewable Energy, vol. 96, pp. 354-356, 2016.
[23] W. T. Huang, and K. C. Yao, “New network sensitivity-based approach for real-time complex power flow calculation,” IET generation, transmission & distribution, vol. 6, no. 2, pp. 109-120, 2012.
[24] B. Wollenberg and A. Wood, “Power Generation, Operation and Control,” 2nd ed., New York, Wiley, 1996.
[25] A. K. Basu, A. Bhattacharya, and … “Planned scheduling for economic power sharing in a CHP-based micro-grid,” IEEE Transactions on power systems, vol. 27, no. 1, pp. 30-38, 2012.
[26] A. K. Basu, A. Bhattacharya, and …, “Impact of strategic deployment of CHP-based DERs on microgrid reliability,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1697-1705, 2010.
[27] G. W. Chang, S. Y. Chu, and H. L. Wang, “An improved backward/forward sweep load flow algorithm for radial distribution systems,” IEEE Transactions on Power Systems vol. 22, no. 2, pp. 882-884, 2007.
[28] A. D. Rana, J. B. Darji, and M. Pandya, “Backward/Forward Sweep Load Flow Algorithm for Radial Distribution System,” International Journal for Scientific Research and Development, vol. 2, no. 1, pp. 398-400, 2014.