[1] محمدعلی زارع چاهوکی و سیدحمیدرضا محمدی، «بهینهسازی هستههای چندگانه در ماشین بردار پشتیبان جفتی برای کاهش شکاف معنایی تشخیص صفحات فریبآمیز»، مجله مهندسی برق دانشگاه تبریز، شماره 4 جلد 46، 135-145، 1395.
[2] محمدامیر عباسیان و حسین نظامآبادیپور، «الگوریتم جستجوی گرانشی چندهدفه مبتنی بر مرتبسازی جبهههای مغلوبنشده»، مجله مهندسی برق دانشگاه تبریز، شماره 1 جلد 41، 68-80، 1390.
[3] سیدحسین غفاریان، هادی صدوقی یزدی و یونس اللهیاری، «دستهبند تککلاسه گرانشگرای مبتنی بر ماشین بردار پشتیبان»، نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 10، شماره 2، 1391.
[4] وحیده منعمیزاده و جواد حمیدزاده، «جستجوی k نزدیکترین همسایه تقریبی به روش ترکیب خطی»، نشریه مهندسی برق و مهندسی کامپیوتر ایران، آماده انتشار.
[5] S. S. Khan and M. G. Madden, “A survey of recent trends in one class classification,” Artificial Intelligence and Cognitive Science, vol. 6206, pp. 188-197, 2010.
[6] A. Wenjuan, M. Liang and H. Liu, “An improved one-class support vector machine classifier for outlier detection,” Mechanical Engineering Science, vol. 229, pp. 580-588, 2015.
[7] S. S. Khan and M. G. Madden, “One-Class Classification: Taxonomy of Study and Review of Techniques,” The Knowledge Engineering Review, vol. 29, pp. 1-30, 2014.
[8] S. Kang, S. Cho and P. Kang, “Multi-class classification via heterogeneous ensemble of one-class classifiers,” Engineering Applications of Artificial Intelligence, vol. 43,pp. 35–43, 2015.
[9] L. Zhang, L. Xingning, W. Bangjun and H. Shuping, “Similarity learning based on multiple support vector data description,” Neural Networks (IJCNN), pp. 1-7, 2015.
[10] D. M. Tax and R.P. Duin, “Uniform object generation for optimizing one-class classifiers,” The Journal of Machine Learning Research, vol. 2, pp. 155-173, 2002.
[11] R. Sadeghi and J. Hamidzadeh, “Automatic Support Vector Data Description,” Soft Computing, 2016, DOI: 10.1007/s00500-016-2317-5.
[12] V. H. Moghaddam, and J. Hamidzadeh, “New Hermite orthogonal polynomial kernel and combined kernels in Support Vector Machine classifier,” Pattern Recognition, vol. 60, pp. 921-935, 2016.
[13] D. M. Tax and R.P. Duin, “Support vector data description,” Machine Learning, vol. 54, pp. 45–66, 2004.
[14] J. Bootkrajang, “A generalised label noise model for classification in the presence of annotation errors,” Neurocomputing, vol. 192, pp. 61–71, 2016.
[15] J. Hamidzadeh, R. Monsefi and H. SadoghiYazdi, “IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering,” Pattern Recognition, vol. 48, pp.1878-1889, 2015.
[16] J. Hamidzadeh, R. Monsefi and H. SadoghiYazdi, “LMIRA: Large Margin Instance Reduction Algorithm,” Neurocomputing, vol. 145, pp. 477-487, 2014.
[17] S. Y. Xia, Z. Xiong, Y. He, K. Li, L. M. Dong and M. Zhang, “Relative density-based classification noise detection,” Optik International Journal for Light and Electron Optics, vol. 125, pp. 6829–6834, 2014.
[18] K. Lee, D. Kim, K. H. Lee and D. Lee, “Density-induced support vector data description,” Neural Networks, IEEE Transactions on, vol. 18, pp. 284–289, 2007.
[19] C. K. Wang, Y. Ting, Y. H. Liu and G. Hariyanto, “A Novel Approach to Generate Artificial Outliers for support Vector Data Description,” IEEE International Symposium on Industrial Electronics (ISIE), Korea, pp. 2202-2207, 2009.
[20] H. W. Cho, “Data description and noise filtering based detection with its application and performance comparison,” Expert systems with Applications, vol. 36, no. 1, pp. 434-441, 2009.
[21] S. M. Guo, L. C. Chen and J. S. Tsai, “A boundary method for outlier detection based on support vector domain description,” Pattern Recognition, vol. 42, pp. 77-83, 2009.
[22] G. X. Huang, H. F. Chen and F. Yin, “Improved support vector data description,” International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1459-1463, 2010.
[23] B. Liu, Y. Xiao, L. Cao, Z. Hao and F. Deng, “SVDD-based outlier detection on uncertain data,” Knowledge and Information Systems, vol. 34, pp. 597-618, 2013.
[24] M. Cha, J. Kim and J. Baek, “Density weighted support vector data description,” Expert Systems with Applications, vol. 41, pp. 3343–3350, 2014.
[25] G. Chen, X. Zhang, Z. Wang and F. Lia, “Robust support vector data description for outlier detection with noise or uncertain data,” Knowledge-Based Systems, vol. 90, pp. 129–137, 2015.
[26] S. Kim, Y. Choi and M. Lee, “Deep learning with support vector data description,” Neurocomputing, vol. 165, pp. 111–117, 2015.
[27] G. Wang, L. Guo, A. Gandomi, G. Hao and H. Wang, “Chaotic Krill Herd algorithm,” Information Sciences, vol. 274, pp. 17–34, 2014.
[28] A. Asuncion and D. Newman, UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA, 2013.
[29] S.S. Khan, J. Hoey and D. Lizotte, “Bayesian multiple imputation approaches for one-class classification,” Advances in Artificial Intelligence, pp. 331–336, 2012.
[30] B. Liu, Y. Xiao and Z. Hao, “An efficient approach for outlier detection with imperfect data labels,” IEEE Trans Knowl. Data Eng, vol. 26, pp. 1602-1616, 2014.