تقویت‌کننده الکترونیکی مقاومت انتقالی برای شبکه‌های مخابرات نوری با ساختار جدید مبتنی بر پسخور فعال ولتاژ جریان

نویسندگان

تهران - دانشگاه تربیت دبیر شهید رجایی - دانشکده مهندسی برق

چکیده

در این مقاله ساختاری جدید جهت تحقق تقویت‌کننده مقاومت انتقالی (TIA) پیشنهاد می‌شود. ساختار پیشنهادی با استفاده از یک ترانزیستور سورس پیرو و ترانزیستور سورس مشترک، به‌عنوان فیدبک ولتاژ-جریان، مقاومت ورودی و مقاومت خروجی را کاهش می‌دهد. در این ساختار به‌جای استفاده از مقاومت برای تبدیل جریان به ولتاژ، ترارسانایی ترانزیستور به ترا امپدانس تبدیل می‌شود و با تزریق جریان به درین ترانزیستور، خروجی ولتاژ مطلوب در گیت ایجاد می‌شود. سپس مداری بر اساس ساختار ارائه‌شده، پیشنهاد می‌شود. مدار پیشنهادی با تکنولوژی 0.18 میکرومتر CMOS شبیه‌سازی شد و نتایج بهره برابر با dBΩ 59 با ریپل بهره کمتر از dBΩ 1 در پهنای باند GHz 8.6 به دست آمد. توان مصرفی مدار mW 18 با منبع V 1.8 و چگالی طیفی جریان نویز در ورودی 23 محاسبه شد. مقادیر بالا در حضور خازن پارازیتی 300fF فوتودیود در ورودی است. در ساختار جدید مصالحه‌های جدیدی ممکن می‌شود. این مصالحه‌ها درجات آزادی بیشتری را که در ساختارهای قبلی در دسترس نبود، فراهم می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

An Electronic Transimpedance Amplifier for Optical Communication Network Based on Active Voltage-Current Feedback

نویسندگان [English]

  • M. Seifouri
  • P. Amiri
  • I. Dadras
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

In this paper , a topology is proposed to realize a new transimpedance amplifier (TIA). The proposed topology reduces the input and output impedances by using a common source transistor as a voltage-current feedback. In this topology instead of using a resistor to convert voltage to current, we convert transistor transconductance into transimpedance, and then by applying an electrical current to drain the required voltage appears at the gate terminal. Furthermore, a TIA circuit is designed on the proposed topology. Simulation of the designed TIA for 1.8V 0.18µm CMOS technology shows that gain of 59dBΩ with 1dBΩ gain ripple of the bandwidth of 10.6GHz can be achieved. While the whole TIA circuit consumes 18mW from 1.8V power supply the simulated average input current noise spectral density is about 21  within the TIA frequency band. Above result is calculated with 300fF parasitic capacitance of photodiode. In this topology new tradeoffs are possible which make a further degree of freedom which are not available in the previous topologies.

کلیدواژه‌ها [English]

  • Transimpedance amplifier
  • optical communication networks
  • gain ripple
  • gain-bandwidth product
  • feedback amplifier
[1] M. Rakideh, M. Seifouri and P. Amiri, “A folded cascode-based broadband transimpedance amplifier for optical communication,” Microelectronics Journal, vol. 54, no. c,  pp. 1-8, 2016.
[2] S. M. R. Hasan, “Design of a low power 3.5-GHz broad-band CMOS transimpedance amplifier for optical transceivers,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 6, pp. 1061-1072, 2005.
[3] M. Seifouri, P. Amiri and M. rakide, “Design of broadband transimpedance amplifier for optical communication systems,” Microelectronics Journal, vol. 45, no.8, pp. 679-684, 2015.
[4] J. Kim and J. F. Buckwalter, “Bandwidth enhancement with low group-delay variation for a 40-Gb/s transimpedance amplifier,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 8, pp. 1964-1972, 2010.
[5] امیری، صیفوری، آفرین و هدایتی‌پور، «طراحی پیش تقویت‌کننده RGC کم‌نویز مدار مجتمع CMOS با پهنای باند GHz20 و بهره dBΩ60»، مجله مهندسی برق دانشگاه تبریز، جلد 46 شماره 2، صفحات 15-23، 1395
[6] D. Chen, S. Yeh, X. Shi, M. A. Do, C. C. Boon and W. M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission,” IEEE Transaction on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 8, pp. 15-16-1525, 2013.
[7] B. Razavi, Integrated Circuit for Optical Communications, Second Edition, Hoboken, New Jersey: John Wiley & Sons, Inc., 2012.
[8] S. S. Mohan, M. M. Hershenson, S. P. Boyed and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 346-355, 2000.
[9] B. Analui and A. Hajimiri,, “Bandwidth enhancement for transimpedance amplifiers,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8 pp. 1263-1270, 2004.
[10] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0,18µm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 39, no. 6, pp. 2389-2396, 2004.
[11] D. J. Jin and S. H. Hsu,, “A 40-Gb/s transimpedance amplifier in 0.18 µm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 43, no.6,  pp. 1449-1457, 2008.
[12] C. F. Liu and S. I. LIU, “A 40-Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90-nm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 43, no.3, pp. 642-665, 2008.
[13] M. H. Taghavi, L. Belostotski, J.W Haslett and P.Ahmadi,“10-Gb/s 0.13-µm CMOS inductorless modified-RGC transimpedance amplifier,” IEEE Transaction on Circuits and Systems I,vol. 62, no. 8, pp. 1971-1980, 2015.
[14] P. Andre and S. Jacobus, “Design of a high gain and power efficient optical reciever front-end in 0.13µm RF CMOS technology for 10 Gbps applications” Microwave and Optical Technology Letters, vol. 58, no. 6, pp. 1499-1504, 2016.