طراحی مقاوم کنترل‌کننده فازی PID بلادرنگ مبتنی بر الگوریتم بهبودیافته تکامل تفاضلی برای کنترل فرکانس ریزشبکه جزیره ای با در نظر گرفتن عوامل غیرخطی و عدم قطعیت ها

نویسندگان

دانشگاه محقق اردبیلی

چکیده

چکیده: در این مقاله، یک کنترل­کننده مقاوم فازی PID که به کنترل­کننده فازی PID بلادرنگ (OFPID) معروف است، برای کنترل فرکانس یک ریزشبکه در حالت جزیره­ای ارائه شده است. استراتژی کنترل­کننده پیشنهادی به­گونه­ای است که ضرایب کنترل‎کننده فازی PID در هر لحظه توسط منطق فازی تنظیم می‎شوند. جهت بهبود عملکرد کنترل‎کننده پیشنهادی، الگوریتم بهبودیافته تکامل تفاضلی (IDE) پیشنهادی که دارای سرعت همگرایی مناسبی برای بهینه­یابی توابع غیرخطی است، برای تنظیم بهینه پارامترهای آن شامل: ضرایب، توابع عضویت، ضرایب وزنی قواعد و قواعد فازی در سه مرحله استفاده می­شود. همچنین برای بهبود عملکرد مقاوم کنترل‎کننده در نقاط کار متفاوت، پارامترهای کنترل­کننده OFPID با در نظرگرفتن عدم قطعیت­هایی بر روی پارامترهای برخی اجزای ریزشبکه با الگوریتم پیشنهادی به­صورت بهینه تنظیم می­شوند. انگیزه اصلی پیشنهاد این استراتژی کنترلی، در هم آمیختن ویژگی‎های منطق فازی و الگوریتم بهبودیافته IDE برای کاهش کنش­های کنترلی و یافتن کنترل بهینه فازی برای برآورده نمودن عملکرد مقاوم کنترل فرکانس ریزشبکه است. ریزشبکه مورد آزمایش، شامل: واحدهای تولید پراکنده ژنراتور دیزلی، فتوولتاییک، پیل سوختی به­همراه الکترولایزر و توربین بادی و واحدهای ذخیره­کننده انرژی پراکنده چرخ طیار و باتری است. برای نزدیک­تر شدن به پاسخ فرکانسی ریزشبکه واقعی، عوامل غیرخطی بر روی مدل منابع تولید پراکنده و ذخیره‎کننده انرژی در نظر گرفته شده­اند. نتایج شبیه‎سازی با اعمال اغتشاش­های متفاوت، بیانگر عملکـرد منـاسب کنترل­کننده OFPID فرکانس پیشنهادی مبتنی بر الگوریتم بهبود یافته IDE نسبت به کنترل­کننده­های PID بهینه­شده و فازی PID کلاسیک است.

کلیدواژه‌ها


عنوان مقاله [English]

Robust Online Fuzzy PID Design Based on Improved Differential Evolution for Islanded Microgrid Frequency Control Considering Nonlinear Factors and Uncertainties

چکیده [English]

Abstract: In this paper, a robust fuzzy PID controller which is called online fuzzy PID (OFPID), for frequency control of an islanded microgrid is proposed. The proposed controller strategy is such that the fuzzy PID coefficients are automatically adjusted by fuzzy set theory at each time. To improve the performance of the proposed controller, the proposed improved differential evolution (IDE) algorithm which has suitable convergence speed in nonlinear functions optimization is used to optimal tune of its parameters including coefficients, membership functions, fuzzy rules weight and rules in three stages. To robust controller design in different operation points, the OFPID controller parameters is optimized by considering the uncertainties on some microgrid component parameters. The motivation for the proposed this control strategy is combination of fuzzy theory feature and IDE optimization algorithm to reduce control efforts and find better fuzzy system to achieve robust performance of microgrid frequency control. The test microgrid, is composed of distributed generation units such as diesel generators, photovoltaic, fuel cells with electrolyzer and wind turbine, as well as energy storage units such as flywheel and battery. In order to get closer to the frequency response of real microgrid, nonlinear factors on the distributed generation and energy storage sources have been considered. Simulation results by applying different disturbances show the good performance of the proposed OFPID controller than the optimized PID and classical fuzzy PID controllers.

کلیدواژه‌ها [English]

  • Keywords: Microgrid
  • frequency control
  • improved differential evolution algorithm
  • online fuzzy PID controller
[1] Y. Li and C. N. Kao, "An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid," IEEE Transactions on Power Electronics, vol. 24, no. 12 pp. 2977-2988, 2009.
[2] سعید عباپور، کاظم زارع و بهنام محمدی ایواتلو، «ارزیابی جنبه­های فنی و اقتصادی شبکه توزیع با هدف توسعه DG بر مبنای کاربرد مدیریت اکتیو در شبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 4، صص 45-35، تبریز، 1393.
[3] J. M. Guerrero, C. Vásquez and R. Teodorescu, "Hierarchical control of droop-controlled DC and AC microgrids – a general approach towards standardization," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158 - 172, 2011.
[4] O. Palizban, K. Kauhaniemi and J. M. Guerrero, "Microgrids in active network management—part I: hierarchical control, energy storage, virtual power plants, and market participation," Renewable and Sustainable Energy Reviews, vol. 36, pp. 428–439, 2014.
[5] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch and T. Sezi, "Conditions for stability of droop-controlled inverter-based microgrids," Automatica, vol. 50, no. 10, pp. 2457-2469, 2014.
[6] J. Li and P. Li, "Research on microgrid frequency control with droop characteristic based on lagrange interpolation," Applied mechanics and materials, vols. 556-562, pp. 1814-1817, 2014.
[7] F. D. Mohammadi, M. J. Ghorbani, A. Feliachi and M. A. Choudhry, "Novel load frequency control approach based on virtual area error in a microgrid including PV and battery," in IEEE PES General Meeting Conference & Exposition, pp. 1-5, 2014.
[8] M. F. M. Arani and Y. A. I. Mohamed, "Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability," IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 385-396, 2015.
[9] C. Yuen, A. Oudalov and A. Timbus, "The provision of frequency control reserves from multiple microgrids," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 173-183, 2011.
[10] N. Rezaei and M. Kalantar, "Economic–environmental hierarchical frequency management of a droop-Controlled islanded microgrid," Energy Conversion and Management, vol. 88, p. 498–515, 2014.
[11] علی حسامی نقشبندی، شورش شکوهی و حسن بیورانی، «کاربرد کنترل‎کننده فازی-عصبی در پایداری ولتاژ و فرکانس ریزشبکه­های جزیره‎ای»، مجله مهندسی برق دانشگاه تبریز، جلد 41، شماره 2، صص 41-50، تبریز، 1391.
[12] M. F. Kangarlu and M. A. Pahlavani, "Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control," Energy, vol. 70, pp. 504-513, 2014.
[13] K. Singh, C. Singh and N. K. Yadav, "Load frequency control in microgrid," International Journal in Computer and Communication Technology, vol. 2, no. 9, pp. 680-684, 2013.
[14] S. Vachirasricirikul and I. Ngamroo, "Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller," IEEE Transaction on Smart Grid, vol. 5, no. 1, pp. 371-380, 2014.
[15] K. J. Bunker and W. W. Weaver, "Microgrid frequency regulation using wind turbine controls," Proceedings of the  Power and Energy Conference at Illinois (PECI), pp. 1-6, 2014.
[16] X. Li, Y. J. Song and S. B. Han, "Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller," Journal of Power Sources, vol. 180, no. 1, pp. 468–475, 2008.
[17] P. F. Frack, E. Pedro, E. H. Watanabe, R. W. D. Doncker and S. Hanno, "Control strategy design for frequency control in autonomous smart microgrids," Procedings of the 5th IEEE International Symposium on Power Electronics for Distributed Generation Systems, pp. 1-8, 2014.
[18] C. Lung, T. Shinta, H. Kakigano and Y. Miura, "Control of uninterrupted switching using a virtual synchronous generator between stand-alone and grid-connected operation of a distributed generation system for houses," Electrical Engineering in Japan, vol. 190, no. 4, pp. 26-36, 2015.
[19] I. Serban and C. Marinescu, "Battery energy storage system for frequency support in microgrids and with enhanced control features for uninterruptible supply of local loads," Electrical Power and Energy Systems, vol. 54, pp. 432–441, 2014.
[20] Q. Shafiee, J. M. Guerrero and J. C. Vasquez, "Distributed secondary control for islanded microGrids - z novel approach," IEEE Transaction on Power Electronic, vol. 29, no. 2,  pp. 1018-1031, 2014.
[21] O. Abedinia, N. Amjadi, A. Ghasemi and H. Shayeghi, "Multi-stage fuzzy load frequency control based on multiobjective harmony search algorithm in deregulated environment," Journal of Operation and Aautomation in Power Engineering, vol. 1, no. 1, pp. 63-73, 2013.
[22] C. S. Chang, W. Fu and F. Wen, "Load frequency control using genetic-algorithm based fuzzy gain scheduling of PI controllers," Electric Machines & Power Systems, vol. 26, no. 1, pp. 39-52, 2007.
[23] H. N. Azadani and R. Torkzade, "Design of GA optimized fuzzy logic-based PID controller for the two area non-reheat thermal power system," 13th Iranian Conference on Fuzzy Systems (IFSC), pp. 1-6, 2013.
[24] H. Bevrani, F. Habibi, P. Babahajyan, M. Watanabe and Y. Mitani, "Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach," IEEE Transactions on Smart Grid, vol. 3, pp. 1935-1944, 2012.
[25] R. K. Sahu, S. Panda and U. K. Rout, "DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity," Electrical Power and Energy Systems, vol. 49, pp. 19-33, 2013.
[26] H. Shayeghi, A. Ghasemi and G. Shokri, "VEPSO based PID with low pass filter for LFC design," International Journal on Ttechnical and Physical Problems of Engineering, vol. 5, no. 1, pp. 66-73, 2013.
[27] R. Storn and K. Price, "Minimizing the real function of the contest by differential evolution," Proceedings of IEEE International Conference on Evolutionary Computation (ICEC), pp. 842-844, 1996.
[28] R. Storn and K. Price, "Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, vol. 11, pp. 341-359, 1997.
[29] A. Musrrat, P. Millie and A. Ajith, "A modified differential evolution algorithm and its application to engineering problems," Proceedings of the International Conference of Soft Computing and Pattern Recognition, pp. 196-201, 2009.
[30] H. Singh and L. Srivastava, "Modified differential evolution algorithm for multi-objective VAR management," Electrical Power and Energy Systems, vol. 55, pp. 731-740, 2014.
[31] مرتضی منتظری و احسان محمدی، «کاربرد الگوریتم ژنتیک در طراحی و بهینه­یابی پارامترهای کنترل­کننده فازی تناسبی-مشتقی (جهت تنظیم سوخت موتور جت)»، فصل­نامه دانش و فناوری هوافضا, شماره 2, صص 3-12، تهران، 1392.
[32] A. A. Zamani, E. Bijami, F. Sheikholeslami and B. Jafrasteh, "Optimal fuzzy load frequency controller with simultaneous auto-tuned membership functions and fuzzy control rules," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 22, pp. 66-86, 2014.
[33] D. J. Lee and L. Wang, "Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: time-domain simulations," IEEE Transactions on Energy Conversion, vol. 23, no. 1,  pp. 311-320, 2008.