[1] S. Dwivedi, A.K. Gogoi, "A compact sub-Hertz local field potential amplifier for implantable biomedical devices", Microelectronics Journal, vol. 128, pp. 105539, 2022.
[2] K. Moussawi, M.J. Kim, S. Baybayan, M. Wood, K.A. Mills, "Deep brain stimulation effect on anterior pallidum reduces motor impulsivity in Parkinson's disease", Brain stimulation, vol. 15, no.1, pp. 23-31, 2022.
[3] J.N. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B.L. Bardakjian, M. Derchansky, D. Serletis, P.L. Carlen, "256-channel neural recording and delta compression microsystem with 3D electrodes", IEEE Journal of Solid-State Circuits, vol. 44, no.3, pp. 995-1005, 2009.
[4] D. Wendler, D. De Dorigo, M. Amayreh, A. Bleitner, M. Marx, R. Willaredt, Y. Manoli, "A 0.0046-mm 2 two-step incremental delta–sigma analog-to-digital converter neuronal recording front end with 120-mvpp offset compensation", IEEE Journal of Solid-State Circuits, vol. 58, no.2, pp. 439-450, 2022.
[5] Y. Liu, S. Luan, I. Williams, A. Rapeaux, T.G. Constandinou, "A 64-channel versatile neural recording SoC with activity-dependent data throughput", IEEE transactions on biomedical circuits and systems, vol. 11, no.6, pp. 1344-1355, 2017.
[6] M.S. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter", IEEE transactions on neural systems and rehabilitation engineering, vol. 17, no.4, pp. 312-321, 2009.
[7] J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, "A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC", IEEE transactions on biomedical circuits and systems, vol. 8, no.4, pp. 497-509, 2014.
[8] S. Santaniello, G. Fiengo, L. Glielmo, W.M. Grill, "Closed-loop control of deep brain stimulation: a simulation study", IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no.1, pp. 15-24, 2010.
[9] T. Levi, P. Bonifazi, P. Massobrio, M. Chiappalone, "Closed-loop systems for next-generation neuroprostheses", Frontiers in Neuroscience, vol. 12, pp. 26, 2018.
[10] M. Zhang, Z. Tang, X. Liu, J. Van der Spiegel, "Electronic neural interfaces", Nature Electronics, vol. 3, no.4, pp. 191-200, 2020.
[11] F. Hemmati, E.N. Aghdam, "A low-power CT 2nd order Delta Sigma modulator using a new design methodology for biomedical applications", AEU-International Journal of Electronics and Communications, vol. 137, pp. 153779, 2021.
[12] M.R. Pazhouhandeh, A. Amirsoleimani, I. Weisspapir, P. Carlen, R. Genov, "Adaptively Clock-Boosted Auto-Ranging Neural-Interface for Emerging Neuromodulation Applications", IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no.6, pp. 1138-1152, 2022.
[13] H. Wu, J. Chen, X. Liu, W. Zou, J. Yang, M. Sawan, "An Energy-Efficient Small-Area Configurable Analog Front-End Interface for Diverse Biosignals Recording", IEEE Transactions on Biomedical Circuits and Systems, vol. 17, no.4, pp. 2023.
[14] H. Chandrakumar, D. Marković, "A 15.2-ENOB 5-kHz BW 4.5-$\mu $ W Chopped CT $\Delta\Sigma $-ADC for Artifact-Tolerant Neural Recording Front Ends", IEEE Journal of Solid-State Circuits, vol. 53, no.12, pp. 3470-3483, 2018.
[15] J. Chen, M. Tarkhan, H. Wu, F.H. Noshahr, J. Yang, M. Sawan, "Recent trends and future prospects of neural recording circuits and systems: A tutorial brief", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no.6, pp. 2654-2660, 2022.
[16] M. Sporer, S. Reich, J.G. Kauffman, M. Ortmanns, "A direct digitizing chopped neural recorder using a body-induced offset based DC servo loop", IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no.3, pp. 409-418, 2022.
[17] B. Gosselin, "Recent advances in neural recording microsystems", Sensors, vol. 11, pp. 4572-4597, 2011.
[18] س. مرادی, ع. قاسمی, ر. لطفی, "روشی جدید برای طراحی ریز تحریک کننده های عصبی ایمن", مجله مهندسی برق دانشگاه تبریز, دوره 45, شماره 4, صص 190-179, زمستان1394.
[19] M.K. Kim, H. Jeon, H.J. Lee, M. Je, "Plugging electronics into minds: Recent trends and advances in neural interface microsystems", IEEE Solid-State Circuits Magazine, vol. 11, no.4, pp. 29-42, 2019.
[20] H. Liu, Y. Lin, L. Qi, Y. Lou, G. Wang, Y. Liu, "Analysis and Design of VCO-Based Neural Front-End With Mixed Domain Level-Crossing for Fast Artifact Recovery", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no.3, pp. 1214-1227, 2022.
[21] T. Moeinfard, H. Kassiri, A 200GΩ-Z IN,< 0.2%-THD CT-△ Σ-Based ADC-Direct Artifact-Tolerant Neural Recording Circuit, In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1901-1905, 2022.
[22] T. Moeinfard, G. Zoidl, H. Kassiri, A SAR-Assisted DC-Coupled Chopper-Stabilized 20μs-Artifact-Recovery $\Delta\Sigma $ ADC for Simultaneous Neural Recording and Stimulation, In: 2022 IEEE Custom Integrated Circuits Conference (CICC), IEEE, pp. 1-2, 2022.
[23] Y. Chen, A. Basu, L. Liu, X. Zou, R. Rajkumar, G.S. Dawe, M. Je, "A digitally assisted, signal folding neural recording amplifier", IEEE transactions on biomedical circuits and systems, vol. 8, no.4, pp. 528-542, 2014.
[24] C. Lee, T. Jeon, M. Jang, S. Park, J. Kim, J. Lim, J.-H. Ahn, Y. Huh, Y. Chae, "A 6.5-μW 10-kHz BW 80.4-dB SNDR G m-C-Based CT∆∑ Modulator With a Feedback-Assisted G m Linearization for Artifact-Tolerant Neural Recording", IEEE Journal of Solid-State Circuits, vol. 55, no.11, pp. 2889-2901, 2020.
[25] X. Yang, M. Ballini, C. Sawigun, W.-Y. Hsu, J.-W. Weijers, J. Putzeys, C.M. Lopez, "An AC-Coupled 1st-Order Δ-ΔΣ Readout IC for Area-Efficient Neural Signal Acquisition", IEEE Journal of Solid-State Circuits, vol. 58, no.4, pp. 949-960, 2023.
[26] J. Li, X. Liu, W. Mao, T. Chen, H. Yu, "Advances in neural recording and stimulation integrated circuits", Frontiers in Neuroscience, vol. 15, pp. 663204, 2021.
[27] N. Pérez-Prieto, Á. Rodríguez-Vázquez, M. Álvarez-Dolado, M. Delgado-Restituto, "A 32-channel time-multiplexed artifact-aware neural recording system", IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no.5, pp. 960-977, 2021.
[28] م.ح. مقامی, ا.م. سوداگر, "طراحی و شبیه سازی یک تراشه 8 کاناله با توان مصرفی و سطح تراشه کم برای ارتباط با سیستم عصبی", مجله مهندسی برق دانشگاه تبریز, دوره 50, شماره 1, صص 418-403, بهار1399.
[29] K. Gulati, H.-S. Lee, "A low-power reconfigurable analog-to-digital converter", IEEE Journal of Solid-State Circuits, vol. 36, no.12, pp. 1900-1911, 2001.
[30] H. Liu, T. Guo, P. Yan, L. Qi, M. Chen, G. Wang, Y. Liu, "A Hybrid 1 st/2 nd-Order VCO-Based CTDSM With Rail-to-Rail Artifact Tolerance for Bidirectional Neural Interface", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no.6, pp. 2682-2686, 2022.
[31] W. Zhao, S. Li, B. Xu, X. Yang, X. Tang, L. Shen, N. Lu, D.Z. Pan, N. Sun, "A 0.025-mm 2 0.8-V 78.5-dB SNDR VCO-Based Sensor Readout Circuit in a Hybrid PLL-$\Delta\Sigma $ M Structure", IEEE Journal of Solid-State Circuits, vol. 55, no.3, pp. 666-679, 2019.
[32] M.R. Pazhouhandeh, M. Chang, T.A. Valiante, R. Genov, "Track-and-zoom neural analog-to-digital converter with blind stimulation artifact rejection", IEEE Journal of Solid-State Circuits, vol. 55, no.7, pp. 1984-1997, 2020.
[33] Y. Wang, H. Luo, Y. Chen, Z. Jiao, Q. Sun, L. Dong, X. Chen, X. Wang, H. Zhang, "A closed-loop neuromodulation chipset with 2-level classification achieving 1.5-Vpp CM interference tolerance, 35-dB stimulation artifact rejection in 0.5 ms and 97.8%-sensitivity seizure detection", IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no.4, pp. 802-819, 2021.