طراحی و پیاده‌سازی سیستم ضبط عصبی مقاوم در برابر آرتیفکت دارای ساختار ADC مستقیم کم‌توان و مساحت بهینه با اشتراک‌گذاری بلوک دیجیتال

نوع مقاله : علمی-پژوهشی

نویسندگان

1 Sahand University of Technology - Sahand City -Tabriz-Iran

2 Sahand University of Technology, Department of Electrical Engineering,

چکیده

در این مقاله، یک بلوک پیشانی ثبت کننده سیگنال های عصبی از نوع مبدل آنالوگ به دیجیتال مستقیم برپایه مدولاتور دلتاسیگما پیوسته در زمان درجه یک با هدف کاهش توان مصرفی و فضای اشغالی ارائه شده است. سیستم در حالت بدون آرتیفکت بصورت یک مدولاتور دلتاسیگما درجه 1 با کوانتایزر تک بیتی کار می کند. هنگام حضور آرتیفک مدولاتور دلتاسیگما دچار اشباع شده که توسط بلوک دیجیتال تشخیص داده شده و توسط مسیر دوم فیدبک مقدار دامنه آرتیفکت تخمین زده می شود. با کم کردن دامنه آرتیفکت از سیگنال ورودی این امکان به سیستم داده می شود تا سیگنال عصبی را هنگام حضور آرتیفکت نیز تبدیل نماید. فرآیند طراحی و پیاده سازی مدار پیشنهادی برپایه سه ایده کلی طراحی مدار بهبود یافته بلوک دارای بیشترین توان مصرفی، استفاده از شمارنده 7 بیتی جهت تشخیص اشباع مدولاتور دلتاسیگما و اشتراک گذاری قسمت دیجیتالی شامل تشخیص اشباع و تخمین دامنه آرتیفکت پایه ریزی شده است. استفاده از سه ایده ذکر شده باعث کاهش توان مصرفی و فضای اشغالی سیستم نهایی در کنار رعایت حداقل پارامترهای دیگر ثبت کننده های سیگنال های عصبی گردید. پیاده سازی سطح ترانزیستور در تکنولوژی CMOS TSMC 0.18u با جانمایی 0.013 mm2  و مصرف توان 4.6 uW  برای صورت گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Low-Power, Area-Efficient ADC-Direct Artifact-Tolerant Neural Recording System Using Digital Block Sharing

نویسندگان [English]

  • Firoz Hemmati 1
  • Esmaeil Najafiaghdam 2
1 Sahand University of Technology - Sahand City -Tabriz-Iran
2 Sahand University of Technology, Department of Electrical Engineering,
چکیده [English]

This article presents a front-end block for recording neural signals of the direct Analog-to-Digital Converter(ADC) type based on the continuous-time Delta-Sigma Modulator (CT-DSM) to reduce power consumption and occupied space. The system works as a CT-DSM with a single-bit quantizer in the artifact-free state. When the artifact is present, the DSM is saturated, which is detected by the digital block, and the second feedback path estimates the amplitude of the artifact. By reducing the amplitude of the artifact from the input signal, the system can convert the neural signal when the artifact is present. The process of designing and implementing the proposed circuit is based on three general ideas of improved circuit design of the block with the highest power consumption, using a 7-bit counter to detect the saturation of the DSM and sharing the digital part. The implementation of the transistor level in CMOS technology is TSMC 0.18um with a channel area of 0.013mm2 and power consumption of 4.6uW.

کلیدواژه‌ها [English]

  • Neural Recording
  • Neural Font-End
  • Low-Area
  • Low-Power
  • Delta Sigma Modulator
  • DSM
[1] S. Dwivedi, A.K. Gogoi, "A compact sub-Hertz local field potential amplifier for implantable biomedical devices",  Microelectronics Journal,  vol. 128,   pp. 105539,  2022.
[2] K. Moussawi, M.J. Kim, S. Baybayan, M. Wood, K.A. Mills, "Deep brain stimulation effect on anterior pallidum reduces motor impulsivity in Parkinson's disease",  Brain stimulation,  vol. 15,  no.1,  pp. 23-31,  2022.
[3] J.N. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B.L. Bardakjian, M. Derchansky, D. Serletis, P.L. Carlen, "256-channel neural recording and delta compression microsystem with 3D electrodes",  IEEE Journal of Solid-State Circuits,  vol. 44,  no.3,  pp. 995-1005,  2009.
[4] D. Wendler, D. De Dorigo, M. Amayreh, A. Bleitner, M. Marx, R. Willaredt, Y. Manoli, "A 0.0046-mm 2 two-step incremental delta–sigma analog-to-digital converter neuronal recording front end with 120-mvpp offset compensation",  IEEE Journal of Solid-State Circuits,  vol. 58,  no.2,  pp. 439-450,  2022.
[5] Y. Liu, S. Luan, I. Williams, A. Rapeaux, T.G. Constandinou, "A 64-channel versatile neural recording SoC with activity-dependent data throughput",  IEEE transactions on biomedical circuits and systems,  vol. 11,  no.6,  pp. 1344-1355,  2017.
[6] M.S. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter",  IEEE transactions on neural systems and rehabilitation engineering,  vol. 17,  no.4,  pp. 312-321,  2009.
[7] J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, "A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC",  IEEE transactions on biomedical circuits and systems,  vol. 8,  no.4,  pp. 497-509,  2014.
[8] S. Santaniello, G. Fiengo, L. Glielmo, W.M. Grill, "Closed-loop control of deep brain stimulation: a simulation study",  IEEE Transactions on Neural Systems and Rehabilitation Engineering,  vol. 19,  no.1,  pp. 15-24,  2010.
[9] T. Levi, P. Bonifazi, P. Massobrio, M. Chiappalone, "Closed-loop systems for next-generation neuroprostheses",  Frontiers in Neuroscience,  vol. 12,   pp. 26,  2018.
[10] M. Zhang, Z. Tang, X. Liu, J. Van der Spiegel, "Electronic neural interfaces",  Nature Electronics,  vol. 3,  no.4,  pp. 191-200,  2020.
[11] F. Hemmati, E.N. Aghdam, "A low-power CT 2nd order Delta Sigma modulator using a new design methodology for biomedical applications",  AEU-International Journal of Electronics and Communications,  vol. 137,   pp. 153779,  2021.
[12] M.R. Pazhouhandeh, A. Amirsoleimani, I. Weisspapir, P. Carlen, R. Genov, "Adaptively Clock-Boosted Auto-Ranging Neural-Interface for Emerging Neuromodulation Applications",  IEEE Transactions on Biomedical Circuits and Systems,  vol. 16,  no.6,  pp. 1138-1152,  2022.
[13] H. Wu, J. Chen, X. Liu, W. Zou, J. Yang, M. Sawan, "An Energy-Efficient Small-Area Configurable Analog Front-End Interface for Diverse Biosignals Recording",  IEEE Transactions on Biomedical Circuits and Systems,  vol. 17,  no.4,  pp.  2023.
[14] H. Chandrakumar, D. Marković, "A 15.2-ENOB 5-kHz BW 4.5-$\mu $ W Chopped CT $\Delta\Sigma $-ADC for Artifact-Tolerant Neural Recording Front Ends",  IEEE Journal of Solid-State Circuits,  vol. 53,  no.12,  pp. 3470-3483,  2018.
[15] J. Chen, M. Tarkhan, H. Wu, F.H. Noshahr, J. Yang, M. Sawan, "Recent trends and future prospects of neural recording circuits and systems: A tutorial brief",  IEEE Transactions on Circuits and Systems II: Express Briefs,  vol. 69,  no.6,  pp. 2654-2660,  2022.
[16] M. Sporer, S. Reich, J.G. Kauffman, M. Ortmanns, "A direct digitizing chopped neural recorder using a body-induced offset based DC servo loop",  IEEE Transactions on Biomedical Circuits and Systems,  vol. 16,  no.3,  pp. 409-418,  2022.
[17] B. Gosselin, "Recent advances in neural recording microsystems",  Sensors,  vol. 11,   pp. 4572-4597,  2011.
[18] س. مرادی, ع. قاسمی, ر. لطفی, "روشی جدید برای طراحی ریز تحریک کننده های عصبی ایمن",  مجله مهندسی برق دانشگاه تبریز,  دوره 45,  شماره 4,  صص 190-179,  زمستان1394.
[19] M.K. Kim, H. Jeon, H.J. Lee, M. Je, "Plugging electronics into minds: Recent trends and advances in neural interface microsystems",  IEEE Solid-State Circuits Magazine,  vol. 11,  no.4,  pp. 29-42,  2019.
[20] H. Liu, Y. Lin, L. Qi, Y. Lou, G. Wang, Y. Liu, "Analysis and Design of VCO-Based Neural Front-End With Mixed Domain Level-Crossing for Fast Artifact Recovery",  IEEE Transactions on Circuits and Systems I: Regular Papers,  vol. 70,  no.3,  pp. 1214-1227,  2022.
[21] T. Moeinfard, H. Kassiri, A 200GΩ-Z IN,< 0.2%-THD CT-△ Σ-Based ADC-Direct Artifact-Tolerant Neural Recording Circuit, In:  2022 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1901-1905, 2022.
[22] T. Moeinfard, G. Zoidl, H. Kassiri, A SAR-Assisted DC-Coupled Chopper-Stabilized 20μs-Artifact-Recovery $\Delta\Sigma $ ADC for Simultaneous Neural Recording and Stimulation, In:  2022 IEEE Custom Integrated Circuits Conference (CICC), IEEE, pp. 1-2, 2022.
[23] Y. Chen, A. Basu, L. Liu, X. Zou, R. Rajkumar, G.S. Dawe, M. Je, "A digitally assisted, signal folding neural recording amplifier",  IEEE transactions on biomedical circuits and systems,  vol. 8,  no.4,  pp. 528-542,  2014.
[24] C. Lee, T. Jeon, M. Jang, S. Park, J. Kim, J. Lim, J.-H. Ahn, Y. Huh, Y. Chae, "A 6.5-μW 10-kHz BW 80.4-dB SNDR G m-C-Based CT∆∑ Modulator With a Feedback-Assisted G m Linearization for Artifact-Tolerant Neural Recording",  IEEE Journal of Solid-State Circuits,  vol. 55,  no.11,  pp. 2889-2901,  2020.
[25] X. Yang, M. Ballini, C. Sawigun, W.-Y. Hsu, J.-W. Weijers, J. Putzeys, C.M. Lopez, "An AC-Coupled 1st-Order Δ-ΔΣ Readout IC for Area-Efficient Neural Signal Acquisition",  IEEE Journal of Solid-State Circuits,  vol. 58,  no.4,  pp. 949-960,  2023.
[26] J. Li, X. Liu, W. Mao, T. Chen, H. Yu, "Advances in neural recording and stimulation integrated circuits",  Frontiers in Neuroscience,  vol. 15,   pp. 663204,  2021.
[27] N. Pérez-Prieto, Á. Rodríguez-Vázquez, M. Álvarez-Dolado, M. Delgado-Restituto, "A 32-channel time-multiplexed artifact-aware neural recording system",  IEEE Transactions on Biomedical Circuits and Systems,  vol. 15,  no.5,  pp. 960-977,  2021.
[28] م.ح. مقامی, ا.م. سوداگر, "طراحی و شبیه سازی یک تراشه 8 کاناله با توان مصرفی و سطح تراشه کم برای ارتباط با سیستم عصبی",  مجله مهندسی برق دانشگاه تبریز,  دوره 50,  شماره 1,  صص 418-403,  بهار1399.
[29] K. Gulati, H.-S. Lee, "A low-power reconfigurable analog-to-digital converter",  IEEE Journal of Solid-State Circuits,  vol. 36,  no.12,  pp. 1900-1911,  2001.
[30] H. Liu, T. Guo, P. Yan, L. Qi, M. Chen, G. Wang, Y. Liu, "A Hybrid 1 st/2 nd-Order VCO-Based CTDSM With Rail-to-Rail Artifact Tolerance for Bidirectional Neural Interface",  IEEE Transactions on Circuits and Systems II: Express Briefs,  vol. 69,  no.6,  pp. 2682-2686,  2022.
[31] W. Zhao, S. Li, B. Xu, X. Yang, X. Tang, L. Shen, N. Lu, D.Z. Pan, N. Sun, "A 0.025-mm 2 0.8-V 78.5-dB SNDR VCO-Based Sensor Readout Circuit in a Hybrid PLL-$\Delta\Sigma $ M Structure",  IEEE Journal of Solid-State Circuits,  vol. 55,  no.3,  pp. 666-679,  2019.
[32] M.R. Pazhouhandeh, M. Chang, T.A. Valiante, R. Genov, "Track-and-zoom neural analog-to-digital converter with blind stimulation artifact rejection",  IEEE Journal of Solid-State Circuits,  vol. 55,  no.7,  pp. 1984-1997,  2020.
[33] Y. Wang, H. Luo, Y. Chen, Z. Jiao, Q. Sun, L. Dong, X. Chen, X. Wang, H. Zhang, "A closed-loop neuromodulation chipset with 2-level classification achieving 1.5-Vpp CM interference tolerance, 35-dB stimulation artifact rejection in 0.5 ms and 97.8%-sensitivity seizure detection",  IEEE Transactions on Biomedical Circuits and Systems,  vol. 15,  no.4,  pp. 802-819,  2021.