طراحی و تحلیل یک فراسطح محاسباتی جدید بر مبنای تشدید فانو برای کاربردهای پردازش تصویر

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

در این مقاله براساس مفهوم تشدید فانو، یک فراسطح جدید طراحی می‌شود که قادر است عملگر‌ ریاضی مشتق مرتبه دوم را در فرکانس‌های نوری بر روی یک سیگنال یا تصویر ورودی بدون نیاز به عدسی‌های حجیم اجرا کند. ساختار این فراسطح از یک شبکه مثلثی تک لایه متشکل از حفره‌های مثلثی متساوی الاضلاع که در بستری از سیلیکون ایجاد شده، تشکیل می‌شود. تابع انتقال مورد نیاز برای یک فراسطح که بتواند از میدان الکتریکی موج تابشی، مشتق‌ بگیرد، استخراج می‌شود. بر اساس این محاسبات، روند طراحی فراسطح جهت دستیابی به تابع انتقال مورد نظر تشریح می‌شود. سپس با اعمال سیگنال‌های مختلف ورودی به فراسطح، نشان داده خواهد شد که در خروجی، مشتق مرتبه دوم سیگنال‌های ورودی ایجاد شده است. در نهایت با اعمال تصاویر مختلف به ورودی فراسطح، نتایج تشخیص لبه‌های تصویر نوری در حوزه آنالوگ ارائه می‌شود. فراسطح‌ معرفی شده می‌تواند مستقیماً مقابل یک حسگر تصویر CCD استاندارد قرار گرفته و در کاربردهای پردازش تصویر به عنوان یک فیلتر فضایی کارا و سریع عمل کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Analysis of a Novel Computational Metasurface Based on Fano Resonance for Image Processing Applications

نویسندگان [English]

  • Mohammad Nassiri 1
  • Mohammad Yazdi 2
1 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.
2 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.
چکیده [English]

In this paper, benefiting from the concept of Fano resonance, a novel metasurface is designed that is capable of performing the second-order derivative mathematical operator at optical frequencies on an input signal or image without any need for bulky lenses. The structure of this metasurface consists of a single-layer triangular array composed of equilateral triangular cavities created in a substrate of silicon. The transfer function required for a metasurface that can derive from the electric field of the radiation wave is presented. Based on these formulations, the process of designing the metasurface to achieve the desired transfer function is described. Then, by applying different input signals to the metasurface, it will be shown that the second derivative of the input signals is created in the output. Finally, by applying different images to the metasurface input, the results of optical image edge detection are presented in the analog domain. The introduced metasurface can be placed directly in front of a standard CCD image sensor and employed as an efficient and fast spatial filter in image processing applications.

کلیدواژه‌ها [English]

  • Computational metasurfaces
  • fano resonance
  • spatial derivative
  • edge detection
  • image processing
[1] S. He, R. Wang, H. Luo, “Computing metasurfaces for all-optical image processing: a brief review,” Nanophotonics, vol. 11, no. 6, pp. 1083-1108, 2022.
[2] F. Zangeneh-Nejad, S. Dimitrios, A. Alù, R. Fleury, “Analogue computing with metamaterials”, Nature Reviews Materials, vol. 6, no. 3, pp. 207-225, 2021.
[3] A. Silva, M. Francesco, C. Giuseppe, G. Vincenzo, A. Alù, N. Engheta, “Performing mathematical operations with metamaterials”, Science, vol. 343, no. 6167, pp. 160-163, 2014.
[4] S. Abdollahramezani, O. Hemmatyar, A. Adibi, “Meta-optics for spatial optical analog computing”, Nanophotonics, vol. 9, no. 13, pp. 4075-4095, 2020.
[5] A. Youssefi, F. Zangeneh-Nejad, S. Abdollahramezani, A. Khavasi, “Analog computing by Brewster effect”, Optics letters, vol. 41, no. 15, pp. 3467-3470, 2016.
[6] T. Zhu, Y. Zhou, Y. Lou, H. Ye, M. Qiu, Z. Ruan, S. Fan, “Plasmonic computing of spatial differentiation”, Nature communications, vol. 8, no. 1, pp. 1-6, 2017.
[7] A. Pors, G. N. Michael, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano letters, vol. 15, no. 1 pp. 791-797, 2015.
[8] S. Abdollahramezani, A. Chizari, A. E. Dorche, M. V. Jamali, J. A. Salehi, “Dielectric metasurfaces solve differential and integro-differential equations,” Optics letters, vol. 42, no. 7, pp. 1197-1200, 2017.
[9] A. Komar, A. Rifat, A. Aoni, L. Xu, M. Rahmani, A. E. Miroshnichenko, D. N. Neshev, “Dielectric metasurface based advanced image processing,” SPIE Micro Nano Materials, Devices, and Applications, vol. 11201, pp.25-26, 2019.
[10] H. Chen, D. An, Z. Li, X. Zhao, “Performing differential operation with a silver dendritic metasurface at visible wavelengths,” Optics express, vol. 25, no. 22, pp. 26417-26426, 2017.
[11] A. Momeni, H. Rajabalipanah, A. Abdolali, K. Achouri, “Generalized optical signal processing based on multioperator metasurfaces synthesized by susceptibility tensors”, Physical Review Applied, vol. 11, no. 6, pp. 064042, 2019.
[12] A. Abdolali, A. Momeni, H. Rajabalipanah, K. Achouri, “Parallel integro-differential equation solving via multi-channel reciprocal bianisotropic metasurface augmented by normal susceptibilities”, New Journal of Physics, vol. 21, no. 11, pp.113048, 2019.
[13] S. Chen, Y. Gao, K. Sun, “Recent progress in Fano-resonant terahertz metasurface and its application,” Discover Applied Sciences, vol. 6, no. 6, 2024.
[14] A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals” Applied Physics Letter, vol. 96, no. 19, pp.193103, 2010.
[15] Z. X. Shen, S. H. Zhou, S. J. Ge, W. Hu, Y. Q. Lu, “Liquid crystal enabled dynamic cloaking of terahertz Fano resonators,” Applied Physics Letter, vol. 114, no. 4, pp. 041106, 2019.
[16] X.S. Li, N. Feng, Y. Xu, Z. Huang, K. Wen, X. Xiong, “Theoretical and simulation study of dynamically tunable sensor based on liquid crystal-modulated Fano resonator in terahertz band,” Optical Laser Technology, vol. 155, pp.108350, 2022.
[17] Y. Liu, Q. Zheng, H. Yuan, S. Wang, K. Yin, X. Dai, “High sensitivity terahertz biosensor based on mode coupling of a graphene/bragg reflector hybrid structure,” Biosensors, vol. 11, no. 10, pp. 377, 2021.
[18] M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Advanced Materials, vol. 29, no. 3, pp. 1603355, 2017.
[19] D. Liu, X. Yu, F. Wu, J. Cao, Y. Zhao, H. Shi, “High-quality resonances in terahertz composite slabs based on metal gratings,” Journal of Optics, vol. 24, no. 10, pp.105103, 2022.
[20] J. Lou, X. Xu, Y. Huang, Y. Yu, J. Wang, G. Fang, “Optically controlled ultrafast terahertz metadevices with ultralow pump threshold,” Small, vol. 17, no. 44, pp. 2104275, 2021.
[21] A. Saba, M. R. Tavakol, P. Karimi-Khoozani, A. Khavasi, “Two-dimensional edge detection by guided mode resonant metasurface”, IEEE Photonics Technology Letters, vol. 30, no. 9, pp. 853-856, 2018.
[22] K. Hoyeong, D. Sounas, A. Cordaro, A. Polman, A. Alù, “Nonlocal metasurfaces for optical signal processing”, Physical review letters, vol. 121, no. 17, pp. 173004, 2018.
[23] A. Cordaro, K. Hoyeong, D. Sounas, A. F. Koenderink, A. Alù, A. Polman, “High-index dielectric metasurfaces performing mathematical operations”, Nano letters, vol. 19, no. 12, pp. 8418-8423, 2019.
[24] K. Hoyeong, A. Cordaro, D. Sounas, A. Polman, A. Alù, “Dual-polarization analog 2D image processing with nonlocal metasurfaces”, ACS Photonics, vol. 7, no. 7, pp. 1799-1805, 2020.
[25] M. Nassiri, M. Yazdi, “Image processing using high-Index dielectric metasurfaces based on fano resonance,” Advanced Theory and Simulations, vol. 7, pp. 2301188, 2024.
[26] Y. Zhou, Z. Hanyu, I. I. Kravchenko, J. Valentine, “Flat optics for image differentiation,” Nature Photonics, vol. 14, no. 5, pp. 316-323, 2020.
[27] B. Rezaee Rezvan, M. Yazdi, S. E. Hosseininejad, “A 2-bit programmable metasurface for dynamic beam steering applications,” Tabriz Journal of Electrical Engineering, vol. 51, no. 2, pp. 277-284, 2021.
[28] R. Asgharian, B. Zakeri, M. Yazdi, S. Samadi, “Design of steerable passive reflect array using non-uniform elements for main beam and side lobe level improvement,” Tabriz Journal of Electrical Engineering, vol. 49, no. 3, pp. 985-993, 2019.
[29] O. D. Asli, M. Yazdi, B. R. Rezvan, “Tunable broadband terahertz absorber based on star-shaped ring graphene metasurface,” Journal of Nanophotonics, vol. 18, no. 2, pp. 026004, 2024.
[30] B. R. Rezvan, M. Yazdi, S. E. Hosseininejad, “On the design of multi-vortex beam multiplexers using programmable metasurfaces," Journal of the Optical Society of America B, vol. 40, pp. 2979-2989, 2023.
[31] B. R. Rezvan, M. Yazdi, S. E. Hosseininejad, “On the design of multibeam digital metasurfaces with multiple feeds,” Advanced Theory and Simulations, vol.6, pp. 2200676, 2023.
[32] M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, S. Tretyakov, “A bianisotropic metasurface with resonant asymmetric absorption,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp.3004-3015, 2015.
[33] http://www.cst.com/products/cstmws.
[34] T. C. Poon, A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Optical Letter, vol. 4, pp. 317–319, 1979.