نوع مقاله : علمی-پژوهشی
نویسندگان
1 گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 عضو هیات علمی دانشگاه شهید باهنر کرمان
3 electrical department of Kerman university
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
This paper proposes an Enhanced Data-Driven Quantized Model-Free Adaptive Control (EDD-QMFAC) structure for a class of unknown nonlinear systems based on the Group Method of Data Handling (GMDH) neural network. In this study, the output quantized data is given to the GMDH block to overcome the data quantization challenges in Data-Driven Control methods. In the proposed control loop the GMDH derives a model to estimate the actual output of the system from the quantized output data based on the predictive feature of this network. The controller then generates the input control signal based on the system’s estimated actual output data. The Lyapunov theory is used to prove the stability of the suggested structure. The simulation results demonstrate the advantages of the proposed control structure over the conventional QMFAC.
کلیدواژهها [English]