مدل‌سازی امکانی- احتمالاتی پارکینگ خودروی‌های برقی با رویکرد بهبود انعطاف‌پذیری در برنامه ریزی مشارکت امنیت مقید واحدهای نیروگاهی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی برق، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استاد، گروه مهندسی برق، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 دانشیار، گروه مهندسی برق، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

از جمله مزایای خودروهای برقی، قابلیت ذخیره‌سازی انبوه آن‌ها می‌باشد که می‌تواند به تغییر سبد تولید ساعتی و کاهش هزینه‌های بهره‌برداری مسئله برنامه‌ریزی مشارکت امنیت مقید واحدهای نیروگاهی (SCUC) کمک کند. از طرفی عدم‌قطعیت موجود در سیستم قدرت، می‌تواند منجر به رخداد عدم تعادل در تولید و مصرف و در نتیجه آن بروز خاموشی‌های غیرقابل پیش‌بینی گردد. بنابراین مطالعات انعطاف‌پذیری سیستم قدرت از اهمیت ویژه‌ای برخوردار گردیده است. در این مقاله، تاثیر حضور خودروهای برقی (V2G) به عنوان منبع پاسخگوی سریع، بر شاخص انعطاف پذیری و هزینه بهره برداری سیستم قدرت بررسی شده است. عدم قطعیت خودروهای برقی با استفاده از روش Z-number مدل گردیده است. در واقع این روش تعداد خودروهای موجود در پارکینگ را به عنوان یک متغیر امکانی و احتمالاتی توصیف می کند. بهبود انعطاف پذیری زمانی معقول است که هزینه بهره برداری در حداقل سطح ممکن قرار گیرد. به همین جهت برای رسیدن به سطح انعطاف پذیری مورد انتظار، مسئله برنامه ریزی مشارکت واحدهای نیروگاهی بطور همزمان با درنظر گرفتن قیود امنیت و انعطاف پذیری حل شده است. تحلیل های عددی حاکی از بهبود سطح انعطاف پذیری با حداقل هزینه بهره برداری می باشد. به منظور نشان دادن اثربخشی روش پیشنهادی از سیستم تست 24 باس IEEE استفاده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic–Possibilistic modeling of V2G parking lot with the approach of improving flexibility in the Security-Constrained Unit Commitment.

نویسندگان [English]

  • R. Sharikabadi 1
  • A. Abdollahi 2
  • M. Rashidinejad 2
  • M. Shafiee 3
1 Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
2 Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
3 Department of Electrical Engineering, Technical and Vocational University, Tehran, Iran
چکیده [English]

One of the advantages of electric vehicles is their mass storage capability, which can help to change the hourly generation portfolio and reduce the operating costs of the SCUC scheduling problem. On the other hand, the uncertainty in the power system can lead to an imbalance in production and consumption, and as a result, unpredictable blackouts. Therefore, studies of the flexibility of the power system have gained particular importance. In this paper, the effect of Vehicle-to-grid (V2G) on the flexibility index and operating cost of the power system has been investigated as it’s considered a quick response source. The uncertainty of electric vehicles (EVs) has been modeled using the Z-number method. In fact, this method describes the number of v2g capable charging stations in each parking lot as a probabilistic–possibilistic variable. Improving flexibility is reasonable when operating costs are at the lowest possible level. For this reason, in order to reach the expected level of flexibility, the SCUC problem has been solved, considering security and flexibility, and the numerical analysis shows the improvement of the level of flexibility with the minimum cost of operation. In order to demonstrate the effectiveness of the proposed method, the IEEE 24-bus test system has been used.

کلیدواژه‌ها [English]

  • Security-Constrained Unit Commitment
  • Flexibility
  • Vehicle-to-grid
  • Uncertainty
  • Z-number model
[1]     K. Sundar, H. Nagarajan, L. Roald, S. Misra, R. Bent, and D. Bienstock, “Chance-constrained unit commitment with N-1 security and wind uncertainty,” IEEE Trans. Control Netw. Syst., vol. 6, no. 3, pp. 1062–1074, 2019.
[2]     C. Zhang and L. Yang, “Distributed AC security-constrained unit commitment for multi-area interconnected power systems,” Electr. Power Syst. Res., vol. 211, no. April, p. 108197, 2022.
[3]     جمشید آقایی، سیداحسان باقری، سجاد شفیعی، طاهر نیکنام، سیدمحسن باقری، « بررسی پاسخگویی شبکه توزیع هوشمند به عملکرد خودروهای الکتریکی هیبریدی قابل اتصال به شبکه»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 1، صفحه 11-20، بهار 1396.
[4]     J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, “Bi-directional electric vehicle fast charging station with novel reactive power compensation for voltage regulation,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 300–310, 2015.
[5]     M. Rahmani, S. Hossein Hosseinian, and M. Abedi, “Optimal integration of Demand Response Programs and electric vehicles into the SCUC,” Sustain. Energy, Grids Networks, vol. 26, p. 100414, 2021.
[6]     C. Fernandes, P. Frías, and J. M. Latorre, “Impact of vehicle-to-grid on power system operation costs: The Spanish case study,” Appl. Energy, vol. 96, pp. 194–202, 2012.
[7]     M. E. Khodayar, L. Wu, and M. Shahidehpour, “Hourly coordination of electric vehicle operation and volatile wind power generation in SCUC,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1271–1279, 2012.
[8]     مهدی تورانی، محمدرضا آقاابراهیمی، حمیدرضا نجفی، « برنامه‌ریزی محدوده پارکینگ خودروهای برقی و شارژ و دشارژ آن‌ها به‌منظور بهبود قابلیت اطمینان در شبکه هوشمند »، مجله مهندسی برق دانشگاه تبریز، دوره ۴7، شماره 2، صفحه 422-413، تابستان 1396.
 [9]    A. Ahmadi, A. Esmaeel Nezhad, P. Siano, B. Hredzak, and S. Saha, “Information-Gap Decision Theory for Robust Security-Constrained Unit Commitment of Joint Renewable Energy and Gridable Vehicles,” IEEE Trans. Ind. Informatics, vol. 16, no. 5, pp. 3064–3075, 2020.
[10]   O. Egbue, C. Uko, A. Aldubaisi, and E. Santi, “A unit commitment model for optimal vehicle-to-grid operation in a power system,” Int. J. Electr. Power Energy Syst., vol. 141, no. February, p. 108094, 2022.
[11]   M. Casini, A. Vicino, and G. G. Zanvettor, “A receding horizon approach to peak power minimization for EV charging stations in the presence of uncertainty,” Int. J. Electr. Power Energy Syst., vol. 126, no. PA, p. 106567, 2021.
[12]   S. F. Hajeforosh, H. Bakhtiari, and M. Bollen, “Risk assessment criteria for utilizing dynamic line rating in presence of electric vehicles uncertainty,” Electr. Power Syst. Res., vol. 212, no. July, p. 108643, 2022.
[13]   N. Eghbali, S. Mehdi, A. Hasankhani, and G. Derakhshan, “A scenario-based stochastic model for day-ahead energy management of a multi-carrier microgrid considering uncertainty of electric vehicles,” J. Energy Storage, vol. 52, no. PB, p. 104843, 2022.
[14]   A. Soroudi and T. Amraee, “Decision making under uncertainty in energy systems: State of the art,” Renew. Sustain. Energy Rev., vol. 28, pp. 376–384, 2013.
[15]   M. Mohammadnejad, A. Abdollahi, and M. Rashidinejad, “Possibilistic-probabilistic self-scheduling of PEVAggregator for participation in spinning reserve market considering uncertain DRPs,” Energy, vol. 196, p. 117108, 2020.
[16]   A. Nasri, A. Abdollahi, M. Rashidinejad, and M. Hadi Amini, “Probabilistic-possibilistic model for a parking lot in the smart distribution network expansion planning,” IET Gener. Transm. Distrib., vol. 12, no. 13, pp. 3363–3374, 2018.
[17]   L. Mokgonyana, K. Smith, and S. Galloway, “Reconfigurable Low Voltage Direct Current Charging Networks for Plug-in Electric Vehicles,” IEEE Trans. Smart Grid, vol. PP, no. c, p. 1, 2018.
[18]   S. Poorvaezi Roukerd, A. Abdollahi, and M. Rashidinejad, “Probabilistic-possibilistic flexibility-based unit commitment with uncertain negawatt demand response resources considering Z-number method,” Int. J. Electr. Power Energy Syst., vol. 113, no. May, pp. 71–89, 2019.
[19]   Z. Guo, Y. Zheng, and G. Li, “Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou,” Energy, vol. 205, p. 117963, 2020.
[20]   M. I. Alizadeh, M. Parsa Moghaddam, N. Amjady, P. Siano, and M. K. Sheikh-El-Eslami, “Flexibility in future power systems with high renewable penetration: A review,” Renew. Sustain. Energy Rev., vol. 57, pp. 1186–1193, 2016.
[21]   M. Cañigueral and J. Meléndez, “Flexibility management of electric vehicles based on user profiles: The Arnhem case study,” Int. J. Electr. Power Energy Syst., vol. 133, no. May, 2021.
[22]   K. Rauma, A. Funke, T. Simolin, P. Järventausta, and C. Rehtanz, “Electric Vehicles as a Flexibility Provider: Optimal Charging Schedules to Improve the Quality of Charging Service,” Electricity, vol. 2, no. 3, pp. 225–243, 2021.
[23]   F. Gonzalez Venegas, M. Petit, and Y. Perez, “Electric Vehicles as Flexibility Providers for Distribution Systems. A Techno-Economic review.,” 25th Int. Conf. Electr. Distrib. (CIRED 2019), no. June, pp. 3–6, 2019.
[24]   B. Zhang and M. Kezunovic, “Impact on Power System Flexibility by Electric Vehicle Participation in Ramp Market,’ IEEE Trans. Smart Grid, no. 3, pp. 1285–1294, 2016.
[25]   A. Nikoobakht, J. Aghaei, T. Niknam, H. Farahmand, and M. Korpås, “Electric vehicle mobility and optimal grid reconfiguration as flexibility tools in wind integrated power systems,” Int. J. Electr. Power Energy Syst., vol. 110, no. 7491, pp. 83–94, 2019.
[26]   A. Pirouzi, J. Aghaei, S. Pirouzi, V. Vahidinasab, and A. R. Jordehi, “Exploring potential storage-based flexibility gains of electric vehicles in smart distribution grids,” J. Energy Storage, vol. 52, no. PC, p. 105056, 2022.
[27]   A. Y. Saber and G. K. Venayagamoorthy, “Intelligent unit commitment with vehicle-to-grid -A cost-emission optimization,” J. Power Sources, vol. 195, no. 3, pp. 898–911, 2010.
[28]   L. A. Zadeh, “A Note on Z-numbers,” Inf. Sci. (Ny)., vol. 181, no. 14, pp. 2923–2932, 2011.
[29]   B. Kang, D. Wei, Y. Li, and Y. Deng, “A method of converting Z-number to classical fuzzy number,” J. Inf. Comput. Sci., vol. 9, no. 3, pp. 703–709, 2012.
[30]  ایمان گروهی ساردو، محمدجواد شهریاری، « برنامه‌ریزی احتمالی سیستم قدرت در حضور خودروهای برقی با در نظر گرفتن عدم‌قطعیت منابع انرژی‌ تجدیدپذیر»، هوش محاسباتی در مهندسی برق، دوره 11، شماره 1، صفحه 130-111، بهار 1399.
[31]   J. Soares, H. Morais, T. Sousa, Z. Vale, and P. Faria, “Day-ahead resource scheduling including demand response for electric vehicles,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 596–605, 2013.
[32]   M. Govardhan and R. Roy, “Economic analysis of unit commitment with distributed energy resources,” Int. J. Electr. Power Energy Syst., vol. 71, pp. 1–14, 2015.
[33]  مهدی منظری توکلی، امیر عبداللهی، مسعود رشیدی‌نژاد، « برنامه‌ریزی مشارکت امنیت مقید امکانی- احتمالاتی واحدهای نیروگاهی با استفاده از مدل Z_number »، مجله مهندسی برق دانشگاه تبریز، دوره ۴7، شماره 3، صفحه 1236-1223، پاییز 1396.
[34]   S. Maghsudlu and S. Mohammadi, “Optimal scheduled unit commitment considering suitable power of electric vehicle and photovoltaic uncertainty,” J. Renew. Sustain. Energy, vol. 10, no. 4, 2018.