[1] حامد محمدی نعمت آباد، احسان زارعیان جهرمی، و راحله بصیری، »طراحی و استخراج مدل مداری یک فیلتر پهن باند بر پایه سطح انتخابگر فرکانس برای کاربردهای ترا هرتز«، مجله مهندسی برق تبریز، جلد 50، شماره 2، صفحات 865-873، 1399.
[2] سجاد راستی، سامیه مطلوب، و علی رستمی، »مدلسازی و امکانسنجی شناسایی ریزگردهای آلاینده هوا مبتنی بر طیفسنجی ترا هرتز در حوزه زمان«، مجله مهندسی برق تبریز، جلد 47، شماره 4، صفحات 1421-1430، 1396.
[3] Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging”, Trends in Biotechnology, vol. 34, no. 10, pp. 810-824, 2016.
[4] Matsumoto, I. Watanabe, A. Kasamatsu, Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography”, Nature Electronics, vol. 3, pp. 122-129, 2020.
[5] Y. Deng, X.H. Deng, F.H. Su, N.H. Liu, J.T. Liu, “Broadband ultra-high transmission of terahertz radiation through monolayer MoS2”, Journal of Applied Physics, vol. 118, no. 224304, pp. 1-5, 2015.
[6] Singh, H. Kang, H. Shin, J.Y. Park, H. Seo, “Highly transparent conducting two-dimensional electron gas channel in ultrathin heterostructures for flexible optoelectronic device applications”, Applied Surface Science, vol. 580, p. 152266, 2022.
[7] Wang, Z. Wang, J. Yang, C. Xu, Q. Zhang, Z. Peng, “Ionic gels and their applications in stretchable electronics”, Macromolecular Rapid Communications, vol. 39, no. 1800246, pp. 1-17, 2018.
[8] Qiu, L.Y.M. Tobing, J. Tong, Y. Xie, Z. Xu, P.N. Ni, D.H. Zhang, “Two-dimensional metallic square-hole array for enhancement of mid-wavelength infrared photodetection”, Optical and Quantum Electronics, vol. 43, no. 203, 2016.
[9] N. Dattoli, W.D. Lu, “ITO nanowires and nanoparticles for transparent films”, MRS Bulletin, vol. 36, no. 10, pp. 782-788, 2011.
[10] Chen, Y.Y. Yue, S.R. Wang, N. Zhang, J. Feng, H.B. Sun, “Graphene as transparent and conductive electrode for organic optoelectronic devices”, Advanced Electronic Materials, vol. 5, no. 10, p. 1900247, 2019.
[11] Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials”, Nature Nanotechnology, vol. 6, pp. 630-634, 2011.
[12] H. Lui, A.J. Frenzel, D.V. Pilon, Y.H. Lee, X. Ling, G.M. Akselrod, J. Kong, N. Gedik, “Trion-induced negative photoconductivity in monolayer MoS2”, Physical Review Letters, vol. 113, no. 16, p. 166801, 2014.
[13] Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves”, IEEE Photonics Journal, vol. 8, no. 6, p. 5502207, 2016.
[14] G. Lee, S.J. Yoo, T.H. Kim, Q.H. Park, “Large-area plasmon enhanced two-dimensional MoS2”, Nanoscale, vol. 9, pp. 16244-16248, 2017.
[15] Li, H. Lu, Y. Li, S. Shi, Z. Yue, J. Zhao, “Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle”, Nanophotonics, vol. 11, no. 5, pp. 995-1001, 2022.
[16] Zhuang, F. Kong, K. Li, S. Sheng, “Plasmonic bandpass filter based on graphene nanoribbon”, Applied Optics, vol. 54, no. 10, pp. 2558-2564, 2015.
[17] Deng, Y. Yan, Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet”, IEEE Photonics Technology Letters, vol. 27, no. 11, pp. 1161-1164, 2015.
[18] Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator”, Nature, vol. 474, pp. 64-67, 2011.
[19] Nakamura, K. Sekiya, S. Matano, Y. Shimura, Y. Nakade, K. Nakagawa, Y. Monnai, H. Maki, “High-speed and on-chip optical switch based on a graphene microheater”, ACS Nano, vol. 16, no. 2, pp. 2690-2698, 2022.
[20] Correas-Serrano, J.S. Gomez-Diaz, J. Perruisseau-Carrier, A. Alvarez-Melcon, “Graphene based plasmonic tunable low-pass filters in the terahertz band”, IEEE Transactions on Nanotechnology, vol. 13, no. 6, pp. 1145-1153, 2014.
[21] Dolatabady, N. Granpayeh, “Graphene based far-infrared junction circulator”, IEEE Transactions on Nanotechnology, vol. 18, pp. 200-207, 2019.
[22] Dolatabady, N. Granpayeh, M. Abedini, “Frequency-tunable logic gates in graphene nano-waveguides”, Photonic Network Communications, vol. 39, no. 3, pp. 187-194, 2020.
[23] S. Chu, C.H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays”, Applied Physics Letters, vol. 102, no. 23, p. 231107, 2013.
[24] He, X. Zhang, Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI”, Optics Express, vol. 21, no. 25, pp. 30664-30673, 2013.
[25] Nikitin, P. Alonso-Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L.E. Hueso, F.H.L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators”, Nature Photonics, vol. 10, no. 4, pp. 239-243, 2016.
[26] Fei, M. Goldflam, J.S. Wu, S. Dai, M. Wagner, A. McLeod, M.K. Liu, K.W. Post, S. Zhu, G.C.A.M. Janssen, “Edge and surface plasmons in graphene nanoribbons”, Nano Letters, vol. 15, no. 12, pp. 8271-8276, 2015.
[27] Robert, N. Dissanayake, P.C. Ku, “Plasmonic nanostructures for transparent photovoltaic facades”, 37th IEEE Photovoltaic Specialists Conferences, Seattle, WA, USA, 2011.
[28] Sourav, Z. Li, Z. Huang, V.D. Botcha, C. Hu, J.P. Ao, Y. Peng, H.C. Kuo, J. Wu, X. Liu, K.W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure”, Advanced Optical Materials, vol. 6, no. 20, p. 1800461, 2018.
[29] E. Babicheva, A. Boltasseva, A.V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators”, Nanophotonics, vol. 4, pp. 165-185, 2015.
[30] Xu, J. Liu, Q. Wang, R. Hui, Z. Chen, V.A. Maroni, J. Wu, “Plasmonic graphene transparent conductors”, Advanced Optical Materials, vol. 24, pp. 71-76, 2012.
[31] K. Hong, G. Yoo, J. Kwon, S. Hong, W.G. Song, N. Liu, I. Omkaram, B. Yoo, S. Ju, S. Kim, M.S. Oh, “High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics”, AIP Advances, vol. 6, p. 055026, 2016.
[32] S. Sachidanand, M.M. Sreelal, R. Sreedharan, G. Viswan, M. Mohan, S. Gautam, R.K. Singh, K. Bhattacharjee, “MoS2 nanostructures as transparent material: Optical transmittance measurements”, Materials Today: Proceedings, vol. 26, pp. 104-107, 2020.
[33] Sharma, P. Aggarwal, A. Singh, S. Kaushik, R. Singh, “Flexible, transparent, and broadband trilayer photodetectors based on MoS2/Ws2 nanostructures”, ACS Applied Nano Materials, vol. 5, no. 9, pp. 13637-13648, 2022.
[34] Yoo, S.L. Choi, S.J. Park, K.T. Lee, S. Lee, M.S. Oh, J. Heo, H.J. Park, “Flexible and wavelength-selective MoS2 phototransistors with monolithically integrated transmission color filters”, Scientific Reports, vol. 7, no. 40945, pp. 1-7, 2017.
[35] Yan, L. Zhu, Y. Zhou, Y.E, L. Wang, X. Xu, “Dielectric property of MoS2 crystal in terahertz and visible regions”, Applied Optics, vol. 54, no. 22, pp. 6732-6736, 2015.
[36] A.K. Othman, C. Guclu, F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption”, Optics Express, vol. 21, no. 6, pp. 7614-7632, 2013.
[37] T. Liu, N.H. Liu, L. Wang, X.H. Deng, F.H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector”, Europhysics Letters, vol. 104, p. 57002, 2013.
[38] A. Kabir, Y. Yoon, J.R. Knab, J.Y. Chen, A.G. Markelz, J.L. Reno, Y. Sadofyev, S. Johnson, Y.H. Zhang, J.P. Bird, “Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems”, Applied Physics Letters, vol. 89, p. 132109, 2006.
[39] Madelung, “Semiconductors: Basic Data”, 2nd Ed. Springer, Berlin, pp. 109-117, 1996.
[40] Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity”, Nano Energy, vol. 23, pp. 89-96, 2016.
[41] Jia, D. Wu, E. Wu, J. Guo, Z. Zhao, Z. Shi, T. Xu, X. Huang, Y. Tian, X. Li, “A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity”, Journal of Materials Chemistry C, vol. 7, pp. 3817-3821, 2019.
[42] Reza Khan, G.S. Choi, “Analysis and optimization of four-coil planar magnetically coupled printed spiral resonators”, Sensors, vol. 16, no. 1219, pp. 1-24, 2016.
[43] Feng, Y. Liu, Y. Shi, X. Wang, D. Dong, “An ultra-compact tunable intersection structure based on graphene nanoribbon”, Journal of Physics D: Applied Physics, vol. 50, no. 18, p. 185101, 2017.
[44] Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets”, Applied Physics Letters, vol. 100, no. 13, p. 131111, 2012.
[45] Ebnonnasir, B. Narayanan, S. Kodambaka, C.V. Ciobanu, “Tunable MoS2 bandgap in MoS2-graphene heterostructures”, Applied Physics Letters, vol. 105, p. 031603, 2014.
[46] O.F. Carvalho, J.R. Mejia-Salazar, “Plasmonics for telecommunications applications”, Sensors, vol. 20, no. 2488, pp. 1-20, 2020.
[47] M. Fujishima, “Future of 300 GHz band wireless communications and their enabler, CMOS transceiver technologies”, Japanese Journal of Applied Physics, vol. 60, no. SB0803, pp. 1-9, 2021.