ردیابی زمان-محدود مقاوم دسته‌ای از سیستم‌های غیرخطی کاربردی متشکل از زیرسیستم‌های متصل دوانتگرال‌گیره (مطالعه موردی: بازوی ربات)

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق- دانشگاه یزد- یزد- ایران

2 دانشکده مهندسی برق-دانشگاه آزاد اسلامی- واحد علوم و تحقیقات تهران-تهران- ایران-

3 دانشکده مهندسی کامپیوتر- دانشگاه علم و صنعت ایران- تهران- ایران

چکیده

در این مقاله، مسئله‌ی ردیابی زمان-محدود مقاوم دسته‌ای از سیستم‌های غیرخطی متشکل از زیرسیستم‌های متصل دوانتگرال‌گیره مورد بررسی قرار می‌گیرد. این دسته‌ی خاص از سیستم‌های غیرخطی، قابلیت توصیف تعدادی از دستگاه‌های عملی از جمله ربات‎های صنعتی ایستا، وسایل دریایی و زیردریایی خودکار، وسایل پرنده‌ی بدون سرنشین و پاندول معکوس را دارد. با تعمیم روش کنترل مد لغزشی ترمینال و تعریف خمینه‌های لغزشی غیرخطی ابتکاری، ورودی‌های کنترلی به گونه‌ای طراحی می‌شوند که مدل دینامیکی سیستم مذکور به فرم سیستم غیرخطی کانونیکال تبدیل شده و هدف ردیابی زمان-محدود برآورده گردد. راه‌کار کنترلی پیشنهادی، پایداری زمان-محدود کلّی سیستم غیرخطی حلقه‌بسته را در حضور اغتشاش و نامعینی‎‌ کراندار و غیرکراندار تضمین می‌کند. علاوه‌ براین، رابطه‌ای برای تخمین زمان محدود همگرایی متغیرهای حالت سیستم به مسیرهای مطلوب استخراج می‌گردد. رابطه‌ی مذکور نشان می‌دهد که سرعت همگرایی در مسئله ردیابی، وابستگی شدیدی به پارامترهای اختیاری موجود در ورودی‌های کنترلی دارد. در انتهای مقاله، به عنوان مطالعه موردی، طرح کنترلی ارائه شده بر روی ربات دارای دو لینک مورد شبیه‌سازی کامپیوتری قرار گرفته و نتایج نشان می‌دهند که ورودی‌های کنترلی غیرخطی به خوبی قادر به برآورده ساختن هدف ردیابی زمان-محدود هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Robust Finite-Time Tracking for a Class of Nonlinear Systems Comprising Interconnected Double Integrator Subsystems (Case study:Robot Manipulator)

نویسندگان [English]

  • A. Abooee 1
  • H.R. Fakharizade-Bafghi 2
  • M.R. Jahed-Motlagh 3
1 Assistant Professor, Department of Electrical Engineering, Yazd University, Yazd, Iran
2 Ph.D Student, Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Professor, School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran, E-mail: Jahedmr@iust.ac.ir
چکیده [English]

In this paper, the robust finite-time tracking for a class of nonlinear systems comprising interconnected double integrator subsystems is discussed. This particular class of nonlinear systems is able to describe and model a group of practical plants such as industrial robot manipulators, autonomous underwater vehicles (AUVs), autonomous marine vessels, unmanned aerial vehicles (UAVs), and inverted pendulums. By developing the nonsingular terminal sliding mode control (NTSMC) method and defining innovative nonlinear sliding manifolds, control inputs are designed in order to convert the aforementioned system to the canonical nonlinear form and, in consequence, two significant goals including the finite-time tracking objective and the global finite-time stabilization of the closed-loop system (subjected to unbounded disturbances and uncertainties) are provided and guaranteed. Furthermore, a remarkable relation is derived to estimate the convergence finite time regarding the mentioned tracking problem. This relation reveals that the convergence finite time extremely depends on the values of arbitrary constants of the designed control inputs. Finally, the proposed robust control scheme is numerically simulated onto two-link robot manipulator and simulation results illustrate that the designed control inputs properly fulfill the finite-time tracking objective.

کلیدواژه‌ها [English]

  • Practical nonlinear system
  • Global finite-time stability
  • Terminal sliding mode control (TSMC)
  • Robust finite-time tracking
  • Interconnected double integrator subsystems
[1] A. Abooee and M. M. Arefi, “Robust finite-time stabilizers for five-degree-of-freedom active magnetic bearing system,” Journal of The Franklin Institute, vol. 356, no. 1, pp. 80–102, 2019.
[2] L. Sun, M. Li, M. Wang, W. Yin, N. Sun, and J. Liu, “Continuous finite-time output torque control approach for series elastic actuator,” Mechanical Systems and Signal Processing, vol. 139, no. 1, pp. 1–12, 2020.
[3] M. Khashei and K. Shojaei Arani, “Tracking control of quadrotor by using adaptive sliding mode control based on Chebyshev neural networks,” Tabriz Journal of Electrical Engineering, vol. 49, no. 4, pp. 1591–1601, 2019.
[4] A. Zavala-río and G. I. Zamora-gómez, “Local-homogeneity-based global continuous control for mechanical systems with constrained inputs : finite-time and exponential stabilization,” International Journal of Control, vol. 90, no. 5, pp. 1037–1051, 2017.
[5] D. Lee, A. K. Sanyal, E. A. Butcher, and D. J. Scheeres, “Finite-time control for spacecraft body-fixed hovering over an asteroid,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 1, pp. 506–520, 2015.
[6] S. M. Esmaeilzadeh and M. Golestani, “Design of an adaptive fixed-time control for a class of secondorder nonlinear systems using sliding mode control,” Tabriz Journal of Electrical Engineering, vol. 50, no. 3, pp. 1025–1034, 2020.
[7] S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682, 1998.
[8] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 751–766, 2000.
[9] S. P. Bhat and D. S. Bernstein, “Geometric homogeneity with applications to finite-time stability,” Mathematics of Control, Signals, and Systems, vol. 17, no. 2, pp. 101–127, 2005
[10] Y. Su, “Global continuous finite-time tracking of robot manipulators,” International Journal of Robust and Nonlinear Control, vol. 19, no. 17, pp. 1871–1885, 2009.
[11] M. Ou, H. Du, and S. Li, “Finite-time tracking control of multiple nonholonomic mobiles,” Journal of The Franklin Institute, vol. 349, no. 9, pp. 2834–2860, 2012.
[12] H. Liu, X. Wang, and T. Zhang, “Robust finite-time stability control of a class of high-order uncertain nonlinear systems,” Asian Journal of Control, vol. 17, no. 3, pp. 1081–1087, 2015.
[13]  Y. Zhao, Y. Sheng, and X. Liu, “Impact angle constrained guidance for all-aspect interception with function-based finite-time sliding mode control,” Nonlinear Dynamics, vol. 85, pp. 1791–1804, 2016.
[14] B. Xu, D. Zhou, and S. Sun, “Finite time sliding sector guidance law with acceleration saturation constraint,” IET Control Theory & Applications, vol. 10, no. 7, pp. 789–799, 2016.
[15] Y. Guo, J. H. Guo, X. Liu, A. J. Li, and C. Q. Wang, “Finite-time blended control for air-to-air missile with lateral thrusters and aerodynamic surfaces,” Aerospace Science and Technology, vol. 97, no. 1, pp. 1–7, 2020.
[16] E. Bernuau, W. Perruquetti, D. Efimov, and E. Moulay, “Robust finite-time output feedback stabilisation of the double integrator,” International Journal of Control, vol. 88, no. 3, pp. 451–460, 2015.
[17] F. Sedghi, M. M. Arefi, A. Abooee, and S. Yin, “Distributed adaptive-neural finite-time consensus control for stochastic nonlinear multi-agent systems subject to saturated inputs,” IEEE Transactions on Neural Networks and Learning Systems, Doi: 10.1109/TNNLS.2022.3145975, 2022.
[18] A. Abooee and M. M. Arefi “Robust finite-time stabilizers for a connected chain of nonlinear double-integrator systems,” IEEE Systems Journal, vol. 13, no. 1, pp. 833–841, 2019.
[19] S. Mobayen, “Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method,” Nonlinear Dynamics, vol. 80, pp. 669–683, 2015.
[20] A. Abooee, H. A. Yaghini-Bonabi, and M. R. Jahed-Motlagh, “Analysis and circuitry realization of a novel three-dimensional chaotic system,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 5, pp. 1235–1245, 2013. 
[21] Z. Lin and J. Yingmin, “Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques,” International Journal of Control, vol. 88, no. 6, pp. 1150–1162, 2015.
[22] H. Wang, B. Chen, C. Lin, Y. Sun, and F. Wang, “Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation,” IET Control Theory & Applications, vol. 11, no. 5, pp. 677–684, 2017.
[23] S. E. Parsegov, A. E. Polyakov, and P. S. Shcherbakov, “Fixed-time consensus algorithm for multi-agent systems with integrator dynamics,” IFAC Proceedings Volumes, vol. 46, no. 27, pp. 110–115, 2013.
[24] N. Wang, H. R. Karimi, H. Li, and S. Su, “Accurate trajectory tracking of disturbed surface vehicles : A finite-time control approach,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1064–1074, 2019.
[25] N. Zhang, W. Gai, M. Zhong, and J. Zhang, “A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance,” Aerospace Science and Technology, vol. 86, no. 1, pp. 204–214, 2019.
[26] Z. Yang and H. Sugiura, “Robust nonlinear control of a three-tank system using finite-time disturbance observers,” Control Engineering Practice, vol. 84, no. 1, pp. 63–71, 2019.
[27] N. Zhou and Y. Xia, “Distributed fault-tolerant control design for spacecraft finite-time attitude synchronization,” International Journal of Robust and Nonlinear Control, vol. 26, no. 14, pp. 2994–3017, 2016.
[28] S. He, J. Wang, and D. Lin, “Robust missile autopilots with finite time convergence,” Asian Journal of Control, vol. 18, no. 3, pp. 1010–1019, 2016.
[29] J. Su, J. Yang, and S. Li, “Continuous finite-time anti-disturbance control for a class of uncertain nonlinear systems,” Trans. Inst. Meas. Control, vol. 36, no. 3, pp. 300–311, 2014,
[30] Z. Y. Sun, C. Q. Zhou, C. C. Chen, and Q. Meng, “Fast finite-time adaptive stabilization of high-order uncertain nonlinear systems with output constraint and zero dynamics,” Information Sciences, vol. 514, no. 1, pp. 571–586, 2020.
[31] K. Mei, L. Ma, R. He, and S. Ding, “Finite-time controller design of multiple integrator nonlinear systems with input saturation,” Applied Mathematics and Computation, vol. 372, no. 1, pp. 1–16, 2020.
[32] S. P. Bhat and D. S. Bernstein, “Finite-time stability of homogeneous systems,” in Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, USA, June 6-6, pp. 2513–2514, 1997.
[33] P. Li and Z. Zheng, “Global finite-time stabilization of planar nonlinear systems with disturbance,” Asian Journal of Control, vol. 14, no. 3, pp. 851–858, 2012.
[34] A. Polyakov and A. Poznyak, “Lyapunov function design for finite-time convergence analysis: “ Twisting” controller for second-order sliding mode realization,” Automatica, vol. 45, no. 2, pp. 444–448, 2009.
[35] Y. Hong, J. Huang, and Y. Xu, “On an output feedback finite-time stabilization problem,” IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 305–309, 2001.
[36] J. Yu, P. Shi, and L. Zhao, “Finite-time command filtered backstepping control for a class of nonlinear systems,” Automatica, vol. 92, no. 1, pp. 173–180, 2018.
[37] D. Shihng, Q. Chunjiang, L. Shihua, and L. Qi, “Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations,” International Journal of Robust and Nonlinear Control, vol. 21, no. 3, pp. 271–294, 2011.
[38] V. Utkin, “On convergence time and disturbance rejection of super-twisting control,” IEEE Transactions on Automatic Control, vol. 58, no. 8, pp. 2013–2017, 2013.
[39] M. Basin, P. Rodriguez-ramirez, and A. Garza-alonso, “Continuous fixed-time convergent super-twisting algorithm in case of unknown state and disturbance initial conditions,” Asian Journal of Control, vol. 21, no. 1, pp. 323–338, 2019.
[40] D. Zholtayev, M. Rubagotti, and T. D. Do, “Adaptive super-twisting sliding mode control for maximum power point tracking of PMSG-based wind energy conversion systems,” Renewable Energy, vol. 183, no. 1, pp. 877–889, 2022.
[41] I. Nagesh and C. Edwards, “A multivariable super-twisting sliding mode approach,” Automatica, vol. 50, no. 3, pp. 984–988, 2014.
[42] M. Basin, “Finite- and fixed-time convergent algorithms: Design and convergence time estimation,” Annual Reviews in Control, vol. 48, no. 1, pp. 209–221, 2019. 
[43] F. Y. Bi, Y. J. Wei, J. Z. Zhang, and W. Cao, “Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents,” IET Control Theory & Applications, vol. 4, no. 11, pp. 2369–2380, 2010.
[44] W. Zhao, L. Shihua, and F. Shumin, “Finite time tracking control of a nonholonomic mobile robot,” Asian Journal of Control, vol. 11, no. 3, pp. 344–357, 2009.
[45] M. Vahdanipour and M. Khodabandeh, “Back-stepping based sliding mode control for a quadrotor with payload disturbance elimination and moment of inertia estimation using adaptive methods,” Tabriz Journal of Electrical Engineering, vol. 47, no. 2, pp. 775–783, 2017.
[46] M. Labbadi and M. Cherkaoui, “Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV,” Aerospace Science and Technology, vol. 93, no. 1, pp. 1–14, 2019.
[47] Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,” Automatica, vol. 54, no. 1, pp. 305–309, 2015.
[48] C. Ton, S. S.Mehta, and Z. Kan, “Super-twisting control of double integrator systems with unknown constant control direction,” IEEE Control Systems Letters, vol. 1, no. 2, pp. 370–375, 2017.
[49] V. A. Tuan and H. Kang, “A new finite-time control solution for robotic manipulators based on nonsingular faste terminal sliding variables and the adaptive super-twisting scheme,” Journal of Computational and Nonlinear Dynmics, vol. 14, no. 3, pp. 31002(1-10), 2019.
[50] K. Raj, V. Muthukumar, S. N. Singh, and K. W. Lee, “Finite-time sliding mode and super-twisting control of fighter aircraft,” Aerospace Science and Technology, vol. 82–83, no. 1, pp. 487–498, 2018.
[51] M. Galicki, “Finite-time control of robotic manipulators,” Automatica, vol. 51, no. 1, pp. 49–54, 2015.
[52] H. Fakharizade Bafghi, M.R. Jahed-Motlagh, A. Abooee, and A. Moarefianpur, “Robust finite-time tracking for a square fully-actuated class of nonlinear systems,” Nonlinear Dynamics, Doi:10.1007/s11071-020-06187-0, 2021.
[53] F. Sedghi, M. M. Arefi, A. Abooee, and O. Kaynak, “Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2517-2527, 2021.
[54] A. Abooee, M. Hayeri Mehrizi, M. M. Arefi, and S. Yin, “Finite-time sliding mode control for a 3-DOF fully actuated autonomous surface vehicle,” Transactions of the Institute of Measurement and Control, vol. 43, no. 2, pp. 371-389, 2021.