مدیریت تراکم سیستم انتقال با استفاده از منابع انعطاف‌پذیری سمت مصرف و با رویکرد بهبود عملکرد شبکه توزیع

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر- دانشگاه تربیت ‌مدرس- تهران- ایران

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت ‌مدرس-تهران- ایران

چکیده

یکی از چالش­های اساسی حوزه بازار انعطاف­پذیری محلی، ابهام در مورد نحوه مشارکت بازیگرانی چون بهره­بردار سیستم انتقال (TSO­) در این بازار جهت بهره­مندی از منابع انعطاف­پذیری سمت مصرف و همچنین هماهنگی آن با بهره­بردار شبکه توزیع (DSO­) است. از این­رو در این مطالعه با هدف مدیریت تراکم­های پیش­بینی نشده سیستم انتقال در اثر افزایش ناگهانی سطح تقاضا با بهره­گیری از منابع سمت مصرف، ساختاری دوسطحی برای بازار انعطاف­پذیری ارائه شده است. سطح اول این بازار مربوط به تامین خدمات مورد نیاز TSO بوده و تنها DSOها امکان مشارکت در آن را دارند. سطح دوم نیز شامل بازارهای محلی موجود در هر شبکه توزیع است که توسط DSOها اجرا شده و توصرف­کنندگان خدمات انعطاف­پذیری پیشنهادی خود را در این بازارها ثبت می­کنند. در این مطالعه هماهنگی بین TSO و DSO مبتنی بر مدل با مدیریت DSO است. به این ترتیب تمام پیشنهادات انعطاف­پذیری شبکه توزیع توسط DSO تجمیع و پس از اصلاح توابع هزینه توصرف­کننده­ها با رویکرد کاهش تلفات شبکه توزیع، در بازار انعطاف­پذیری سطح اول ثبت و در اختیار TSO قرار خواهد گرفت. فرایند اصلاح توابع هزینه توصرف­کننده­ها توسط DSO یک مسئله بهینه­سازی است که با الگوریتم بهینه­سازی چرخه آب حل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Transmission system congestion management with demand-side flexibility resources considering distribution system performance improvement

نویسندگان [English]

  • R, Khodabakhsh 1
  • M.R. Haghifam 1
  • M.K. Sheikh El Eslami 2
1 Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
2 Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

The lack of clarity regarding the participation of transmission system operators and their collaboration with distribution system operators in local flexibility markets is one of the challenges of these markets. So in this study for managing transmission system unpredicted congestions due to sudden increase in system load with demand side resources, a bilevel flexibility market is presented. The first level of this market is related to providing TSOs with required services and only DSOs can participate in this level. The second level consists of local markets in each distribution system that are managed by DSOs and prosumers submit their flexibility bids in these markets. In this paper, DSO and TSO coordination is based on DSO-managed models. This means that DSO aggregates all flexibility bids in distribution networks and modifies prosumers' cost functions considering distribution network loss minimization. The DSO then submits these bids to the first level flexibility market. Modifying prosumers' cost functions is an optimization problem that is solved using water cycle optimization algorithms.  

کلیدواژه‌ها [English]

  • Transmission system operator
  • unpredicted congestions
  • demand side resources
  • distribution system operator
  • bi-level flexibility market
[1] نجمه شهیدی راد، مهدی نیرومند, و رحمت­الله هوشمند، «محاسبه نرخ خرابی و ارزیابی قابلیت اطمینان سیستم فتوولتائیک به روش مونت کارلو با درنظرگرفتن شرایط آب و هوایی»، مجله مهندسی برق دانشگاه تبریز، دوره 44، شماره 3، پاییز 1397.
[2] IEA, Harnessing Variable Renewables- a guide to the balancing chalange. 2011.
[3] پری فضلعلی­پور، بهنام محمدی ایواتلو و مهدی احسان، «استراتژی پیشنهاددهی ریزشبکه‌ها در بازارهای انرژی و رزرو روز بعد با در نظر گرفتن عدم‌قطعیت در تولید و مصرف بار الکتریکی» مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 3، سال 1398.
[4] E. Hillberg et al., “Flexibility needs in the future power system,” Int. Smart Grid Action Netw., 2019.
[5] O. M. Babatunde, J. L. Munda, and Y. Hamam, “Power system flexibility: A review,” 2020.
[6] J. Zhao, T. Zheng, and E. Litvinov, “A unified framework for defining and measuring flexibility in power system,” IEEE Trans. Power Syst., 2016.
[7] M. Poncela, A. Purvins, and S. Chondrogiannis, “Pan-European analysis on power system flexibility,” Energies, 2018.
[8] X. Jin, Q. Wu, and H. Jia, “Local flexibility markets: Literature review on concepts, models and clearing methods,” Applied Energy. 2020.
[9] G. Strbac et al., “Cost-effective decarbonization in a decentralized market: The benefits of using flexible technologies and resources,” IEEE Power Energy Mag., 2019.
[10] B. Kroposki et al., “Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy,” IEEE Power Energy Mag., 2017.
[11] I. Bouloumpasis, D. Steen, and L. A. Tuan, “Congestion Management using Local Flexibility Markets: Recent Development and Challenges,” 2019.
[12] N. Stringer et al., “Consumer-Led Transition: Australia’s World-Leading Distributed Energy Resource Integration Efforts,” IEEE Power Energy Mag., 2020.
[13] T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Designing decentralized markets for distribution system flexibility,” IEEE Trans. Power Syst., 2019.
[14] C. ZHANG, Y. DING, N. C. NORDENTOFT, P. PINSON, and J. ØSTERGAARD, “FLECH: A Danish market solution for DSO congestion management through DER flexibility services,” J. Mod. Power Syst. Clean Energy, 2014.
[15] A. Esmat, J. Usaola, and M. Á. Moreno, “Distribution-level flexibility market for congestion management,” Energies, 2018.
[16] P. Olivella-Rosell et al., “Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources,” 2018.
[17] D. T. Nguyen, M. Negnevitsky, and M. De Groot, “Pool-based demand response exchange-concept and modeling,” IEEE Trans. Power Syst., 2011.
[18] M. Pavlovic, T. Gawron-Deutsch, C. Neureiter, and K. Diwold, “SGAM business layer for a local flexibility market,” 2016.
[19] A. Esmat, J. Usaola, and M. Á. Moreno, “A decentralized local flexibility market considering the uncertainty of demand,” Energies, 2018.
[20] S. S. Torbaghan, N. Blaauwbroek, P. Nguyen, and M. Gibescu, “Local market framework for exploiting flexibility from the end users,” 2016.
[21] I. Bouloumpasis, N. Mirzaei Alavijeh, D. Steen, and A. T. Le, “Local flexibility market framework for grid support services to distribution networks,” Electr. Eng., 2021.
[22] P. Olivella-Rosell et al., “Local flexibility market design for aggregators providing multiple flexibility services at distribution network level,” Energies, 2018.
[23] S. S. Torbaghan et al., “A market-based framework for demand side flexibility scheduling and dispatching,” Sustainable Energy, Grids and Networks. 2018.
[24] M. Diekerhof, F. Peterssen, and A. Monti, “Hierarchical distributed robust optimization for demand response services,” IEEE Trans. Smart Grid, 2018.
[25] F. Retorta, J. Aguiar, I. Rezende, J. Villar, and B. Silva, “Local market for TSO and DSO reactive power provision using DSO grid resources,” Energies, 2020.
[26] M. Pantoš, “Market-based congestion management in electric power systems with exploitation of aggregators,” Int. J. Electr. Power Energy Syst., 2020.
[27] محمد پناه آذری، «طراحی بازار ذخیره عملیاتی در شبکه توزیع با در نظر گرفتن محدودیت‌های فنی شبکه»، دانشگاه تربیت مدرس، 1399.
[28] T. Schittekatte and L. Meeus, “Flexibility markets: Q&A with project pioneers,” Util. Policy, 2020.
[29] S. Gumpu, B. Pamulaparthy, and A. Sharma, “Review of Congestion Management Methods from Conventional to Smart Grid Scenario,” International Journal of Emerging Electric Power Systems. 2019.
[30] M. M. Gajjala and A. Ahmad, “A survey on recent advances in transmission congestion management,” Int. Rev. Appl. Sci. Eng., 2021.
[31] A. G. Givisiez, K. Petrou, and L. F. Ochoa, “A Review on TSO-DSO Coordination Models and Solution Techniques,” Electr. Power Syst. Res., 2020.
[32] J. Bellenbaum, J. Höckner, and C. Weber, “Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions,” Energy Econ., 2022.
[33] M. Attar, S. Repo, and P. Mann, “Congestion management market design- Approach for the Nordics and Central Europe,” Appl. Energy, 2022.
[34] O. Okur, R. Brouwer, P. Bots, and F. Troost, “Aggregated Flexibility to Support Congestion Management,” 2018.
[35] Z. Ghofrani-Jahromi, Z. Mahmoodzadeh, and M. Ehsan, “Distribution loss allocation for radial systems including dgs,” IEEE Trans. Power Deliv., 2014.
[36] X. Bai, Q. Sun, L. Liu, F. Liu, X. Ji, and J. Hardy, “Multi-objective planning for electric vehicle charging stations considering TOU price,” 2017.
[37] M. Tsurumi, T. Tanino, and M. Inuiguchi, “Shapley function on a class of cooperative fuzzy games,” Eur. J. Oper. Res., 2001.
[38] H. M. Soliman and A. Leon-Garcia, “Game-theoretic demand-side management with storage devices for the future smart grid,” IEEE Trans. Smart Grid, 2014.
[39] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, “Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems,” Comput. Struct., 2012.
[40] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim, “Water cycle algorithm for solving multi-objective optimization problems,” Soft Comput., 2015.
[41] M. Nasir, A. Sadollah, Y. H. Choi, and J. H. Kim, “A comprehensive review on water cycle algorithm and its applications,” Neural Computing and Applications. 2020.
[42] M. R. Narimani, A. A. Vahed, R. Azizipanah-Abarghooee, and M. Javidsharifi, “Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost,” IET Gener. Transm. Distrib., 2014.
[43] P. Nallagownden, K. Mahesh, and I. Elamvazuthi, “A combined-model for uncertain load and optimal configuration of distributed generation in power distribution system,” Int. J. Simul. Syst. Sci. Technol., 2017.