مدار نمونه‌گیر-نگهدارنده کم‌مصرف با استفاده از سوئیچ‌های آنالوگ ناقل جریان مبتنی بر ترانزیستور اثر میدانی نانولوله‌کربنی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، گروه مهندسی برق- دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی برق- دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

3 دانشیار، گروه مهندسی برق- دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

در این مقاله مدار سطح ترانزیستوری مدار نمونه‌گیر-نگهدارنده تک سر و دیفرانسیلی کم‌توان، مبتنی بر فنّاوری ترانزیستورهای اثر میدانی نانولوله کربنی با بهره‌گیری از مزایای بلوک‌های ناقل‌های هدایت جریانی نسل دوم ارائه شده است. عمل کلیدزنی در مدارهای نمونه‌بردار و نگهدارنده پیشنهادی بر پایه ساختار ناقل‌های هدایت جریانی نسل دوم است به این معنی است که عملکردی نظیر سوئیچ‌های آنالوگ ناقل جریانی دارد. پیاده‌سازی مدارهای پیشنهادی برای بلوک نمونه‌گیر –نگهدارنده با توجه به مزایای ترانزیستورهای اثر میدانی نانولوله کربنی نسبت به ترانزیستورهای اثر میدانی فلز عایق نیمه‌هادی باعث بهبود شاخص‌های عملکردی مدار نمونه‌گیر-نگهدارنده شده است. مدارهای نمونه‌بردار و نگهدارنده پیشنهادی دارای مصرف توان بسیار پایین، سرعت عملکردی بالا است و همچنین نیاز به سیگنال پالس ساعت غیر همپوشان ندارد. این مدارهای پیشنهادی در نرم‌افزار HSPICE با استفاده از فنّاوری 32 نانومتر ترانزیستور اثر میدانی نانولوله کربنی، پیاده‌سازی و شبیه‌سازی‌شده است. نتایج حاصل از شبیه‌سازی نشان می‌دهد توان مصرفی مدار نمونه‌گیر-نگهدارنده دیفرانسیلی 45/13 میکرو وات است، همچنین مقدار ENOB مدار نمونه گیر–نگهدارنده دیفرانسیلی به ازای فرکانس نمونه‌گیر 2 گیگاهرتز و فرکانس ورودی 20 مگاهرتز برابر 11 بیت است. شاخص FOM مدار پیشنهادی برابر با 6-10×61/0 (nJ/Bit.Samples) است.

کلیدواژه‌ها


عنوان مقاله [English]

Low Power Sample and Hold using Current Conveyor Analog Switches Based on Carbon Nano-Tube Field Effect Transistor

نویسندگان [English]

  • M. Yousefi 1
  • S. S. Moosavy 2
  • Kh. Monfaredi 3
1 Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
2 Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
3 Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
چکیده [English]

In this paper, the transistor level of single-ended and differential low-power sample-hold is presented based on carbon nanotube field effect transistor technology using the advantages of second generation current conveyor blocks. The switching operation in the proposed sampl and holds is based on the structure of the second generation current conveyor, which means that it has the same function as the analog current-conveyor switches.The implementation of the proposed the sample and hold blocks with using advantages of carbon nanotube field effect transistors improves the performance sampl and hold circuit. The proposed sample and hold circuits have very low power consumption and high operating speed, and it also does not require a non-overlapping clock pulse signal. These proposed circuits have been implemented and simulated in HSPICE software using 32-nanometer carbon nanotube field effect transistor technology. The simulation results show that the power consumption of the differential sample and hold circuit is 13.45 μW, also the ENOB value of the differential sample and hold circuit for the sampling frequency of 2 GHz and the input frequency of 20 MHz is 11 bits. The FOM index of the proposed circuit is 0.61×10-6 (nJ/Bit.Samples).

کلیدواژه‌ها [English]

  • Carbon Nano-Tube Field Effect Transistor
  • Sample and Hold
  • Differential
  • Second Generation Current Conveyor
 
[1] F. Maloberti, "Data converters", Springer Science & Business Media, 2007. 
[2] J. M. Goldberg,  M. B. Sandler, "New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier", IEE Proceedings-Circuits, Devices and Systems, vol.141, no.4, pp.315-324, 1994.
[3] A. N. Shirazi, S. A. Mirhaj, S. J. Ashtiani, O. Shoaei, "Linearity improvement of open-loop NMOS source-follower sample and hold circuits", IET circuits, devices & systems, vol.5, no.1, pp.1-7, 2011.
[4] Y. Xiang, F. Xiangning,  Z. Hao, "Design of sample-and-hold circuit for a reconfigurable ADC", In 2012 International Conference on Computer Science and Service System, pp. 1276-1279, 2012.
[5] P. Vorenkamp, J. P. Verdaasdonk, "Fully bipolar, 120-Msample/s 10-b track-and-hold circuit", IEEE Journal of Solid-State Circuits, vol.27, no.7, pp.88-992, 1992.
[6] C. Sawigun, W. A. Serdijn, "Analysis and design of a low-voltage, low-power, high-precision, class-AB current-mode subthreshold CMOS sample and hold circuit", IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58, no.7, pp.1615-1626, 2011.
[7] Y. S. Hwang, J. J. Chen, S. Y. Wu, L. P. Liao, C. C. Tsai, "A new pipelined analog-to-digital converter using current conveyors", Analog Integrated Circuits and Signal Processing, vol.50, no.3, pp.213-220, 2007.
[8] Y. S. Hwang, S. F. Wang, P. W. Sheu, J. J. Chen, "Novel FBCCII-based sample-and-hold and MDAC circuits", International journal of electronics, vol.95, no.11, pp.1111-1117, 2008.
[9] S. S. Ang, M. R. Hoque, C. C. Chen, D. Woodward, "A sample-and-hold current measurement integrated circuit for neural recording", International journal of electronics, vol.93, no.12, pp.793-803, 2006.
[10] A. Harb, "A programmable full clock rectifier and sample-and-hold amplifier for biomedical applications", Analog Integrated Circuits and Signal Processing, vol.67, no.1, pp.89-94, 2011.
[11] S. A. Mahmoud, T. B. Nazzal, "Sample and hold circuits for low-frequency signals in analog-to-digital converter", In 2015 International conference on Information and Communication Technology Research (ICTRC), pp. 36-39, 2015.
[12] الهام نیک بخت بیدگلی، داریوش دیدبان، "بررسی عملکرد مالتی‌پلکسر سه ارزشی مبتنی بر ترانزیستورهای اثر میدان نانولوله کربنی"، مجله مهندسی برق دانشگاه تبریز، جلد 50 ، شماره 2، صفحات 943-953، 1399
[13] A. S. Sedra, K. Smith, "A second-generation current conveyor and its applications", IEEE Transactions on circuit theory, vol.17, no.1, pp.132-134, 1970.
[14] C. Toumazou, F. J. Lidgey, D. G. Haigh, "Analogue IC Design: The Current-Mode Approach", Peter Peregrinus, 1990.
[15] M. Sagbas, S. Minaei, U. E. Ayten, "Component educed current‐mode full‐wave rectifier circuits using single active component", IET Circuits, Devices & Systems, vol.10, no.1, pp.1-11, 2016.
[16] C. Premont, N. Abouchu, R. Grisel, J. P. Chante, "A current conveyor-based high-frequency analog switch",  IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.45, no.3, pp.298-300, 1998.
[17] A. Monpapassorn, "An analogue switch using a current conveyor", International journal of electronics, vol.89, no.8, pp.651-656, 2002.
[18] A. Monpapassorn, "Programmable wide range voltage adder/subtractor and its application as an encoder", IEE Proceedings-Circuits, Devices and Systems, vol.152, no.6, pp.697-702, 2005.
[19] K. Angkeaw, P. Prommee, "Two digitally programmable gain amplifiers based on current conveyors", Analog Integrated Circuits and Signal Processing", vol.67,no.2, pp.253-260, 2011.
[20] M. H. Moaiyeri, R. Chavoshisani, A. Jalali, K. Navi, O. Hashemipour, "High-performance mixed-mode universal min-max circuits for nanotechnology", Circuits, Systems, and Signal Processing, vol.31, no.2, pp.465-488, 2012.
[21] D. Akinwande, J. Liang, S. Chong, Y. Nishi, H. S .P.  Wong,   "Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection", Journal of Applied Physics, vol.104, no.12, pp.124514, 2008.
[22] M. Kumngern, T. Nonthaputha, F. Khateb, "Low‐power sample and hold circuits using current conveyor analogue switches", IET Circuits, Devices & Systems, vol.12, no.4, pp.397-402, 2018.
[23] S. Chatterjee, P. R. Kinget, "A 0.5-V 1-Msps track-and-hold circuit with 60-dB SNDR", IEEE Journal of Solid-State Circuits, vol.42, no.4, pp.722-729, 2007.
[24] C. Sawigun, W. A. Serdijn, "Analysis and design of a low-voltage, low-power, high-precision, class-AB current-mode subthreshold CMOS sample and hold circuit", IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58, no.7, pp.1615-1626, 2011.
[25] A. Harb, "A programmable full clock rectifier and sample-and-hold amplifier for biomedical applications", Analog Integrated Circuits and Signal Processing, vol.67, no.1, pp.89-94, 2011.
[26] A. Abolhasani, M. Tohidi, K. Hadidi, A.  Khoei, "A new high-speed, high-resolution open-loop CMOS sample and hold", Analog Integrated Circuits and Signal Processing, vol.78, no.2, pp.409-419, 2014
[27] H. Mahmoodian, & M. Dolatshahi, "An energy-efficient sample-and-hold circuit in CNTFET technology for high-speed applications", Analog Integrated Circuits and Signal Processing, 103(1), 209-221, 2020