طبقه‌بند همباشی ادراکی مبتنی بر منطق فازی توسعه یافته

نوع مقاله : علمی-پژوهشی

نویسندگان

1 قطب علمی رایانش نرم و پردازش هوشمند اطلاعات-گروه مهندسی کامپیوتر- دانشکده مهندسی- دانشگاه فردوسی مشهد

2 دانشکده برق و کامپیوتر- دانشگاه ارومیه

چکیده

پایگاه قوانین طبقه‌بند فازی همباشی (FAC)، مجموعه‌ای از قوانین فازی همباشی است که اغلب مبتنی بر داده‌های کمّی سیستم می‌باشد. درحالی‌که در دنیای واقعی- با پیچیدگی‌ها و عدم قطعیت‌های موجود- طبقه‌بندی، یک مسئله تصمیم‌گیری است که تحت تاًثیر شدید دانش، تجربه، و دیدگاه شخصی افراد می‌باشد. در این مقاله، ساختار کلی ف-طبقه‌بند فازی همباشی(f-FAC) را در چارچوب منطق فازی توسعه‌یافته معرفی می‌نماییم که بیش از پیش به شیوه تفکر و استنتاج آدمی نزدیک می‌باشد. در ساختار پیشنهادی، دانش و تجربه انسانی در قالب مفهوم اعتبار فازی در هر دو مرحله تشکیل پایگاه قوانین و استنتاج طبقه بندهای فازی همباشی لحاظ شده است. در این طبقه‌بند، اعتبار مشخصه‌ها و قوانین با تلفیق نظرکارشناسان براساس هوش‌جمعی و با استفاده از محاسبات ادراکی تعیین می‌گردد. به منظور ارزیابی روش پیشنهادی، f-FARC-HD به عنوان توسعه‌ای از طبقه‌بند FARC-HD پیاده‌سازی شده و با تعدادی از طبقه‌بندهای دیگر- فازی همباشی و غیرفازی همباشی- مقایسه می‌شود. همچنین، کارآیی دو طبقه‌بند f-FARC-HD و FARC-HD در سطوح مختلف اغتشاش بررسی می‌گردد. آزمایش‌ها بر روی یک مجموعه داده واقعی ازاطلاعات بیماران بخش سوختگی بیمارستان‌های اهواز اجرا شده است. نتایج نشان می‌دهد که با در نظر گرفتن مفهوم اعتبار در f-FARC-HD، طبقه‌بندی کارا با پیچیدگی بسیار کم‌تر بدست می‌آید که حساسیت آن نسبت به تغییرات اغتشاش کمتر از FARC-HD می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Perceptual Associative Classifier based on Extended Fuzzy Logic

نویسندگان [English]

  • M. Kadkhoda 1
  • M.-R Akbarzadeh-T 1
  • F. Sabahi 2
1 Center of Excellence on Soft Computing and Intelligent Information Processing, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran
چکیده [English]

Rule base of a Fuzzy Associative Classifier (FAC) is a collection of fuzzy associative rules that are often based on the system's quantitative data. However, due to the real-world complexities and uncertainties, classification in many practical circumstances remains a matter of art of decision-making that is strongly influenced by the knowledge, experience, and personal perspective of individuals. In this paper, we introduce the f-associative fuzzy classifier (f-FAC) in the framework of Extended Fuzzy Logic (FLe), which is more closely related to the way of thinking and reasoning of human beings. In the proposed structure, human knowledge and experience are considered by fuzzy validity concept in both phases of construction and deduction of FACs. In this classifier, the validity of the items and rules is determined by integrating the opinion of experts on the basis of wisdom of crowds and using perceptual computing. To evaluate the proposed approach, a real dataset of burn patients in Ahwaz are considered. f-FARC-HD is then implemented as an extension of FARC-HD associative classifier and is compared with the other approaches (associative classifier and non-associative classifier). Also, f-FARC-HD and FARC-HD are compared in different levels of noise. Results indicate that considering the concept of validity in the proposed extended approach, f-FARC-HD, leads to comparable accuracy, but at a considerably less complexity. Also, f-FARC-HD is less sensitive against noise.

کلیدواژه‌ها [English]

  • Validity
  • Extended Fuzzy Logic
  • Fuzzy Associative Classifier
  • Uncertainty
  • Perceptual Computing
[1]       M. Antonelli, D. Bernardo, H. Hagras, and F. Marcelloni, “Multiobjective evolutionary optimization of type-2 Fuzzy rule-based systems for financial data classification”, IEEE Transactions on Fuzzy Systems, vol. 25, no. 2, pp. 249–264, 2017.
[2]      A. Ferranti, F. Marcelloni, A. Segatori, M. Antonelli, and P. Ducange, “A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data ”, Information Sciences, vol. 415, pp. 319–340, 2017.
[3]      M. I. Rey, M. Galende, M. J. Fuente, and G. I. Sainz-Palmero, “Multi-objective based fuzzy rule based systems (FRBSs) for trade-off improvement in accuracy and interpretability: A rule relevance point of view”, Knowledge-Based Systems, vol. 127, pp. 67–84, 2017.
[4]      R. Agrawal, R. Srikant, and others, “Fast algorithms for mining association rules”, in Proceeding of VLDB’94, 1994, vol. 1215, pp. 487–499.
[5]      M. Kadkhoda, M.-R. Akbarzadeh-T, and S. M. Taheri, “Mining fuzzy temporal itemsete within various time intevals in
[6]      quantitative dataset”, Iranian Journal of Fuzzy Systems, vol. 13, no. 7, 2016.
[7]      Z. Davarzani, M. Kadkhoda, and M. R. Akbarzadeh Totonchi, “A GA-based fuzzy mining algorithm using selections pressure technique for extracting membership functions”, in 3rp joint congress on fuzzy and intelligent systems, 2009.
[8]      Z. Zhang, W. Pedrycz, and J. Huang, “Efficient mining product-based fuzzy association rules through central limit theorem’, Applied Soft Computing, vol. 63, pp. 235–248, 2018.
[9]      Z. Chen and G. Chen, “Building an associative classifier based on fuzzy Association rules”, International Journal of Computational Intelligence Systems, vol. 1, no. 3, pp. 262–273, 2008.
[10]      S. Saraswathi and N. Kannan, “A hybrid associative classification model for software development effort estimation”, Circuits and Systems, vol. 7, no. 06, pp. 824–834, 2016.
[11]      V. G. Giannoglou, D. G. Stavrakoudis, J. B. Theocharis, and V. Petridis, “Genetic fuzzy rule based classification systems for coronary plaque characterization based on intravascular ultrasound images”, Engineering Applications of Artificial Intelligence, vol. 38, pp. 203–220, 2015.
[12]      J. P. Lucas, A. Laurent, M. N. Moreno, and M. Teisseire, “A fuzzy associative classification approach for recommender systems”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 20, no. 04, pp. 579–617, 2012.
[13]      J. A. Sanz, A. Fernández, H. Bustince, and F. Herrera, “IVTURS: A linguistic fuzzy rule-based classification System Based On a new interval-valued fuzzy reasoning method with tuning and rule selection.”, IEEE Transaction on Fuzzy Systems, vol. 21, no. 3, pp. 399–411, 2013.
[14]      Y. Ma, G. Chen, and Q. Wei, “A novel business analytics approach and case study – fuzzy associative classifier based on information gain and rule-covering”, Journal of Management Analytics, vol. 1, no. 1, pp. 1–19, 2014.
[15]      J. Sanz, D. Bernardo, F. Herrera, H. Bustince Sola, and H. Hagras, “A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data”, IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973–990, 2015.
[16]      R. Alcalá, J. Alcalá-Fdez, and F. Herrera, “A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection”, IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp. 616–635, 2007.
[17]      J. Alcala-Fdez, R. Alcala, and F. Herrera, “A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning”, IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 857–872, 2011.
[18]      M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, and F. Herrera, “Improving a fuzzy association rule-based classification model by granularity learning based on heuristic measures over multiple granularities”, IEEE International Workshop on in Genetic and Evolutionary Fuzzy Systems (GEFS), pp. 44–51, 2013.
[19]      M. Fazzolari, R. Alcalá, and F. Herrera, “A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems”, Applied Soft Computing, vol. 24, pp. 470–481, 2014.
[20]      L. A. Zadeh, “Toward extended fuzzy logic—A first step”, Fuzzy Sets and Systems, vol. 160, no. 21, pp. 3175–3181, 2009.
[21]      فرناز صباحی و محمد رضا اکبرزاده توتونچی، «شناسایی سیستم‌های غیرخطی بر اساس منطق فازی توسعه یافته», مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 1، صفحه 32-23، 1393.
[22]      F. Sabahi and M.-R. Akbarzadeh-T, “Introducing validity in fuzzy probability for judicial decision-making”, International Journal of Approximate Reasoning, vol. 55, no. 6, pp. 1383–1403, 2014.
[23]      V. A. Niskanen, “A concept map approach to approximate reasoning with fuzzy extended logic”, in Fuzzy Technology, Springer, 2016, pp. 47–70.
[24]      J. Surowiecki, “The wisdom of crowds. 2004 Anchor”, Reprint edition (August 16, 2005), 2005.
[25]      الناز زعفرانی معطر, محمدرضا فیضی درخشی و آزاده روحانی, «تشخیص هوشمند و خودکار غلط‌های تایپی در پایگاه‌داده‌های بزرگ بدون استفاده از لغت‌نامه», مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحه 91-81، 1396.
[26]      سید هادی حسینی, بابک نجار اعرابی, بهزاد مشیری و اشکان رحیمی کیان, «الگوریتم ترکیب فازی مدل‌های پیش بین جریان ترافیک در حضور داده‌های اغتشاشی», مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، صفحه 132-121، 1395.
[27]      L. A. Zadeh, “Fuzzy logic and approximate reasoning”, Synthese, vol. 30, no. 3, pp. 407–428, 1975.
[28]      L. A. Zadeh, “From fuzzy logic to extended fuzzy logic-A first step”, in NAFIPS 2009-2009 Annual Meeting of the North American Fuzzy Information Processing Society, 2009, pp. 1–2.
[29]      F. Sabahi and M. R. Akbarzadeh-T, “Extended fuzzy logic: sets and systems”, IEEE Transactions on Fuzzy Systems, vol. 24, no. 3, pp. 530–543, 2016.
[30]      F. Sabahi and M.-R. Akbarzadeh-T, “A qualified description of extended fuzzy logic”, Information Sciences, vol. 244, pp. 60–74, 2013.
[31]      F. Sabahi and M. Akbarzadeh Tootoonchi, “A framework for analysis of extended fuzzy logic”, Journal of Zhejiang University Science, vol. 15, no. 17, pp. 584–591, 2014.
[32]      F. Liu and J. M. Mendel, “Encoding words into interval type-2 fuzzy sets using an interval approach”, IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1503–1521, 2008.
[33]      D. Wu, J. M. Mendel, and S. Coupland, “Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis”, Fuzzy Systems, IEEE Transactions on, vol. 20, no. 3, pp. 499–513, 2012.
[34]      J. Mendel and D. Wu, Perceptual Computing: Aiding People in Making Subjective Judgments, vol. 13. John Wiley & Sons, 2010.
[35]      B. Kavšek and N. Lavrač, “APRIORI-SD: Adapting association rule learning to subgroup discovery”, Applied Artificial Intelligence, vol. 20, no. 7, pp. 543–583, 2006.
 [36]      B. Liu, W. Hsu and Y. Ma, “Integrating classification and association rule mining”, in Proceeding of KDD”98, New York, NY, 1998, pp. 80–86.
[37]      B. Liu, Y. Ma, and C.-K. Wong, “Classification using association rules: weaknesses and enhancements”, in Data mining for scientific and engineering applications, Springer, pp. 591–605, 2001.
[38]      W. Li, J. Han, and J. Pei, “CMAR: Accurate and efficient classification based on multiple class-association rules”, in Proceeding of ICDM’01, pp. 369–376, 2001.
[39]      M. Nandhini, M. Rajalakshmi, and S. N. Sivanandam, “Experimental and statistical analysis on the performance of firefly based predictive association rule classifier for health care data diagnosis”, Journal of Control Engineering and Applied Informatics, vol. 19, no. 2, pp. 101–110, 2017.
[40]      J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[41]      J. Hühn and E. Hüllermeier, “FURIA: An algorithm for unordered fuzzy rule induction”, Data Mining and Knowledge Discovery, vol. 19, no. 3, pp. 293–319, 2009.
[42]      X. Zhu and X. Wu, “Class noise vs. attribute noise: a quantitative study”, Artificial Intelligence Review, vol. 22, no. 3, pp. 177–210, 2004.