مشارکت پاسخ بار مبتنی‌بر مشخصه افتی تعمیم‌یافته جهت بهبود کنترل فرکانس ریزشبکه‌های جزیره‌ای

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی برق- دانشکده مهندسی - دانشگاه کردستان

چکیده

بحران انرژی، مسائل زیست‌محیطی و هم‌چنین ملاحظات اقتصادی منجربه استفاده از راه­حل­های جدید در سیستم‌های قدرت مدرن شده­است. یکی از روی­کردهای جدید، استفاده از مفهوم پاسخ بار است. در این روش، بارهای هوشمند را در تنظیم دینامیک‌های سیستم به­صورت پیوسته مشارکت می‌دهند. در این مقاله یک روش جدید پاسخ بار، برای کنترل فرکانس ریزشبکه­های جزیره­ای ارائه شده­است. روش پیشنهادی بر­اساس مشخصه افتی تعمیم­یافته است که بارهای اکتیو و راکتیو قابل­کنترل را با استفاده از مکانیسمی مشخص، تغییر می­دهد. کارکرد مناسب روش پیشنهادی، با تغییر سیستماتیک بارهای اکتیو و راکتیو در طی چندین سناریوی مختلف شبیه‌سازی نشان داده شده­است. در این شبیه‌سازی‌ها، فرکانس و ولتاژ سیستم در دو حالت مختلف بررسی و مشاهده گردیده­است؛ حالتی­که فقط کنترل‌کننده‌های مرسوم سمت تولید وجود داشته­باشد و هم‌چنین حالتی­که غیر از کنترل‌کننده‌های مرسوم، حلقه پاسخ بار پیشنهادی نیز مشارکت داشته­باشد. نتایج شبیه­سازی، کارکرد مناسب کنترل­کننده پیشنهادی و کمک به بهبود پایداری سیستم را نشان می­دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Generalized droop characteristic-based Demand Response for Frequency Control in Isolated Microgrids

نویسندگان [English]

  • F. Habibi
  • Q. Shafiee
  • H. Bevrani
Department of Electrical Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Environmental concerns, energy and economical-technical issues make modern power networks to use alternative approaches such as demand response (DR). The DR is an ability of system to contribute smart loads in dynamic regulation, continuously. This paper presents a new DR approach for frequency control of isolated microgrids. The proposed method is based on a generalized droop characteristic (GDC), changing controllable active and reactive loads through a set of special equations. To verify the control method, several scenarios are simulated in which the system frequency and voltage are studied. The simulation results are carried out in the presence of the proposed DR control loop in comparison with the conventional generation side controller. The results show proposed control methodology provides appropriate performance and improved stability. 

کلیدواژه‌ها [English]

  • Controllable loads
  • demand response
  • generalized droop characteristic
  • microgrids
  • smart home
[1]      فاطمه جمشیدی, محمدمهدی قنبریان، اسما تفکر، «کنترل مقاوم فرکانس ریزشبکه‌ی جزیره‌ایی با کنترل‌گر PI تنظیم‌شده با منطق فازی و الگوریتم رقابت استعماری», مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 3، صفحات: 1059-1067، پاییز 1397.
[2]      علی کریمی، حسین فلاح‌زاده ابرقوئی، مجید نیری‌پور, «روش کنترل جدید برای مبدل منبع ولتاژ و ژنراتور سنکرون به‌منظور کنترل فرکانس در یک ریزشبکه», مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 2، صفحات: 891-906، تابستان 1397.
[3]      F. C. Schweppe, R. D. Tabors, J. L. Kirtley, H. R. Outhred, F. H. Pickel, and A. J. Cox, “Homeostatic utility control,” IEEE Trans. Power Appar. Syst., vol. PAS-99, no. 3, pp. 1151–1163, May 1980.
[4]      M. Hussain and Y. Gao, “A review of demand response in an efficient smart grid environment,” Electr. J., vol. 31, no. 5, pp. 55–63, Jun. 2018.
[5]      داود روشن دوست، رحمت اله هوشمند، اسکندر قلی پور، مصطفی نصرت آبادی، «طراحی یک سیستم مدیریت انرژی برای یک ریزشبکه‌ صنعتی مبتنی بر منابع CHP از طریق برنامه‌ریزی تولید و پاسخ تقاضا», مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحات: 197-209، پاییز 1395.
[6]      P. U. Herath, V. Fusco, M. N. Caceres, G. K. Venayagamoorthy, S. Squartini, F. Piazza, and J. M. Corchado, “Computational Intelligence-Based Demand Response Management in a Microgrid,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 732–740, Jan. 2019.
[7]      K. Dehghanpour and S. Afsharnia, “Electrical demand side contribution to frequency control in power systems: A review on technical aspects,” Renew. Sustain. Energy Rev., vol. 41, pp. 1267–1276, Sep. 2015.
[8]      S. Wang, S. Bi, and Y.-J. A. Zhang, “Demand Response Management for Profit Maximizing Energy Loads in Real-Time Electricity Market,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6387–6396, Nov. 2018.
[9]      M. Aunedi, P. Aristidis Kountouriotis, J. E. Ortega Calderon, D. Angeli, and G. Strbac, “Economic and environmental benefits of dynamic demand in providing frequency regulation,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2036–2048, 2013.
[10]      S. L. Arun and M. P. Selvan, “Intelligent Residential Energy Management System for Dynamic Demand Response in Smart Buildings,” IEEE Syst. J., vol. 12, no. 2, pp. 1329–1340, Jun. 2018.
[11]      H. Yang, J. Zhang, J. Qiu, S. Zhang, M. Lai, and Z. Y. Dong, “A Practical Pricing Approach to Smart Grid Demand Response Based on Load Classification,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 179–190, Jan. 2018.
[12]      Y. Bian, H. Wyman-Pain, F. Li, R. Bhakar, S. Mishra, and N. P. Padhy, “Demand Side Contributions for System Inertia in the GB Power System,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3521–3530, Jul. 2018.
[13]      M. R. Vedady Moghadam, R. T. B. Ma, and R. Zhang, “Distributed Frequency Control in Smart Grids via Randomized Demand Response,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2798–2809, Nov. 2014.
[14]      A. Mohsenzadeh, C. Pang, and M.-R. Haghifam, “Determining Optimal Forming of Flexible Microgrids in the Presence of Demand Response in Smart Distribution Systems,” IEEE Syst. J., vol. 12, no. 4, pp. 3315–3323, Dec. 2018.
[15]      M. Vahedipour-Dahraie, A. Anvari-Moghaddam, and J. M. Guerrero, “Evaluation of reliability in risk-constrained scheduling of autonomous microgrids with demand response and renewable resources,” IET Renew. Power Gener., vol. 12, no. 6, pp. 657–667, Apr. 2018.
[16]      M. L. Little, S. F. Rabbi, K. Pope, and J. E. Quaicoe, “Unified Probabilistic Modeling of Wind Reserves for Demand Response and Frequency Regulation in Islanded Microgrids,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 5671–5681, Nov. 2018.
[17]      N. Padmanabhan, M. Ahmed, and K. Bhattacharya, “Simultaneous Procurement of Demand Response Provisions in Energy and Spinning Reserve Markets,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4667–4682, Sep. 2018.
[18]      K. Ghahary, A. Abdollahi, M. Rashidinejad, and M. I. Alizadeh, “Optimal reserve market clearing considering uncertain demand response using information gap decision theory,” Int. J. Electr. Power Energy Syst., vol. 101, pp. 213–222, Oct. 2018.
[19]      A. Banshwar, N. K. Sharma, Y. R. Sood, and R. Shrivastava, “Market-based participation of energy storage scheme to support renewable energy sources for the procurement of energy and spinning reserve,” Renew. Energy, vol. 135, pp. 326–344, May 2019.
[20]      A. Fattahi, A. Nahavandi, and M. Jokarzadeh, “A comprehensive reserve allocation method in a micro-grid considering renewable generation intermittency and demand side participation,” Energy, vol. 155, pp. 678–689, Jul. 2018.
[21]      S. Bahrami, M. H. Amini, M. Shafie-khah, and J. P. S. Catalao, “A Decentralized Electricity Market Scheme Enabling Demand Response Deployment,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4218–4227, Jul. 2018.
[22]      Q. Hu, F. Li, X. Fang, and L. Bai, “A Framework of Residential Demand Aggregation With Financial Incentives,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 497–505, Jan. 2018.
[23]      K. Khezeli and E. Bitar, “Risk-Sensitive Learning and Pricing for Demand Response,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6000–6007, Nov. 2018.
[24]      Y. Tang, F. Li, Q. Chen, M. Li, Q. Wang, M. Ni, and G. Chen, “Frequency prediction method considering demand response aggregate characteristics and control effects,” Appl. Energy, vol. 229, pp. 936–944, Nov. 2018.
[25]      Y.-K. Wu and K.-T. Tang, “Frequency Support by Demand Response – Review and Analysis,” Energy Procedia, vol. 156, pp. 327–331, Jan. 2019.
[26]      A. Malik and J. Ravishankar, “A hybrid control approach for regulating frequency through demand response,” Appl. Energy, vol. 210, pp. 1347–1362, Jan. 2018.
[27]      P. Babahajiani, Q. Shafiee, and H. Bevrani, “Intelligent Demand Response Contribution in Frequency Control of Multi-Area Power Systems,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1282–1291, Mar. 2018.
[28]      G. Benysek, J. Bojarski, R. Smolenski, M. Jarnut, and S. Werminski, “Application of Stochastic Decentralized Active Demand Response (DADR) System for Load Frequency Control,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1055–1062, Mar. 2018.
[29]      A. Molina-Garcia, I. Munoz-Benavente, A. D. Hansen, and E. Gomez-Lazaro, “Demand-side contribution to primary frequency control with wind farm auxiliary control,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2391–2399, Sep. 2014.
[30]      A. Molina-García, F. Bouffard, and D. S. Kirschen, “Decentralized demand-side contribution to primary frequency control,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 411–419, Feb. 2011.
[31]      Z. Xu, J. Østergaard, and M. Togeby, “Demand as frequency controlled reserve,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1062–1071, Aug. 2011.
[32]      احسان هوشمند، رضا نوروزیان، عباس ربیعی، «اشتراک‌گذاری بهینه انرژی منابع تولید پراکنده تجدیدپذیر در شبکه توزیع با درنظرگرفتن عدم‌قطعیت»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 2، صفحات: 931-942، تابستان 1397.
[33]      H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, and Y. Mitani, “Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1935–1944, Dec. 2012.
[34]      F. Habibi, A. H. Naghshbandy, and H. Bevrani, “Robust voltage controller design for an isolated Microgrid using Kharitonov’s theorem and D-stability concept,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 656–665, Jan. 2013.
[35]      H. Bevrani, B. Francois, and T. Ise, Microgrid dynamics and control. John Wiley & Sons, 2017.
[36]      K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, “A Voltage and Frequency Droop Control Method for Parallel Inverters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107–1115, Jul. 2007.
[37]      H. Bevrani and S. Shokoohi, “An intelligent droop control for simultaneous voltage and frequency regulation in Islanded microgrids,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1505–1513, Sep. 2013.