تحلیل سرعت‌های مختلف انجام حرکت دست‌رسانی با استفاده از آنالیز کمّی بازگشتی و کمّی‌کننده‌های غیرخطی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 گروه مهندسی پزشکی - واحد علوم و تحقیقات - دانشگاه آزاد اسلامی

2 گروه فیزیک و مهندسی پزشکی - دانشکده پزشکی - دانشگاه علوم پزشکی تهران ; مرکز تحقیقات فناوریهای بیومدیکال و رباتیک - دانشگاه علوم پزشکی تهران

3 گروه مغز و اعصاب - دانشکده پزشکی - دانشگاه علوم پزشکی مشهد

چکیده

استفاده از روش‌های غیرخطی در پردازش سیگنال‌های حیاتی به‌دلیل ماهیت غیرخطی سیستم‌های بیولوژیکی مولد این سیگنال‌ها مورد توجه قرارگرفته است. از جمله این روش‌ها، نمودارهای بازگشتی است که بازنمایی گرافیکی و کیفی از پویایی موجود در سیگنال را فراهم می‌آورند. حرکت مهارتی دست‌رسانی از جمله فعالیت‌های مهم حرکتی در طول زندگی بشر به‌شمار می‌آید. علی‌رغم توانمندی روش‌های غیرخطی، استفاده از آن در تحلیل سیگنال الکترومایوگرام طی حرکت دسترسانی، کمتر مورد توجه قرار گرفته است. از این رو، در این مقاله برای طبقه‌بندی سرعت‌های مختلف در انجام این حرکت در صفحه افقی، سعی شده است علاوه بر تولید ساختارهای کیفی نمودارهای بازگشتی، تغییرات پویای سیگنال الکترومایوگرام طی انجام پروتکل ثبت، کمّی‌سازی گردد. به‌این منظور از شاخص‌های آنالیز کمّی بازگشتی به همراه کمّی‌کننده‌های غیرخطی شامل نمای لیاپانوف و بُعد فرکتال هیگوچی استفاده شده است. براساس آنالیز واریانس چند متغیره، بهترین ویژگی‌ها در تفکیک سرعت‌های مختلف انجام حرکت دست‌رسانی شناسایی شده‌اند. نتایج نشان می‌دهد که شاخص‌های نرخ بازگشت، قطعیت، لامیناریتی و بعد فرکتال هیگوچی توانمندترین ویژگی‌ها در توصیف دادگان ثبت شده می‌باشند. بر اساس ویژگی‌های انتخاب شده، طبقه‌بندی حرکات با استفاده از الگوریتم‌های k-نزدیک‌ترین همسایه با صحت %96.67، ماشین بردار پشتیبان %100، آنالیز افتراقی خطی %100 و درخت تصمیم %90، انجام گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Reaching Movements at Different Speeds using Recurrence Quantification Analysis and Nonlinear Quantifiers

نویسندگان [English]

  • V. R. Sabzevari 1
  • A. H. Jafari 2
  • R. Boostani 3
1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
چکیده [English]

Using nonlinear signal processing methods is critical in processing biological signals due to their nonlinear dynamics. Recurrence plots are one of these nonlinear methods that provide qualitative and graphical representation of inherent dynamic of signal. Reaching movement is one of the important skill movements during human life. Despite of nonlinear methods capability to analyze the electromyogram signals during reaching movement, these methods are less considered. Therefore, the current manuscript investigates the classification of reaching movements at different speeds in horizontal plane. To achieve this, some quantitative indicators of recurrence plot analysis and nonlinear quantifiers including Lyapunov exponent and Higuchi fractal dimension are used. Based on multivariate analysis of variance, most discriminative features in the separation of different speeds of reaching movement are selected. Results show Recurrence rate, determinism, laminarity and Higuchi fractal dimension are best indicators to describe the recorded signals. The accuracy of KNN is 96.67%, SVM is 100%, linear discriminant analysis is 100%, and decision tree is 90%.

کلیدواژه‌ها [English]

  • Reaching movement
  • movement speed
  • RQA
  • Higuchi fractal dimension
  • classification
  • multivariate analysis of variance
[1]   J. V. Maizel and R. P. Lenk, "Enhanced graphic matrix analysis of nucleic acid and protein sequences," Proceedings of the National Academy of Sciences, vol. 78, no. 12, pp. 7665-7669, 1981.
[2]   C. L. Webber Jr and J. P. Zbilut, "Recurrence quantification analysis of nonlinear dynamical systems," Tutorials in contemporary nonlinear methods for the behavioral sciences, pp. 26-94, 2005.
[3]   N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, "Recurrence plots for the analysis of complex systems," Physics reports, vol. 438, no. 5, pp. 237-329, 2007.
[4]   J. P. Zbilut, N. Thomasson, and C. L. Webber, "Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals," Medical engineering & physics, vol. 24, no. 1, pp. 53, 2002.
[5]   H. Ding, S. Crozier, and S. Wilson, "A new heart rate variability analysis method by means of quantifying the variation of nonlinear dynamic patterns," IEEE transactions on biomedical engineering, vol. 54, no. 9, pp. 1590-1597, 2007.
[6]   H. Yang, "Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals," IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 339-347, 2011.
[7]   U. Desai, R. J. Martis, U. R. Acharya, C. G. Nayak, G. Seshikala, and R. SHETTY K, "Diagnosis of multiclass tachycardia beats Using recurrence quantification analysis And ensemble classifiers," Journal of Mechanics in Medicine and Biology, vol. 16, no. 01, pp. 1640005, 2016.
[8]   C. Cheng, C. Kan, and H. Yang, "Heterogeneous recurrence analysis of heartbeat dynamics for the identification of sleep apnea events," Computers in biology and medicine, vol. 75, pp. 10-18, 2016.
[9]   M. Niknazar, S. Mousavi, B. V. Vahdat, and M. Sayyah, "A new framework based on recurrence quantification analysis for epileptic seizure detection," IEEE journal of biomedical and health informatics, vol. 17, no. 3, pp. 572-578, 2013.
[10] G. Ouyang, L. Xie, H. Chen, X. Li, X. Guan, and H. Wu, "Automated prediction of epileptic seizures in rats with recurrence quantification analysis," in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 153-156, 2006.
[11] نسیبه طالبی، علی مطیع نصرآبادی، «به کارگیری روش غیرخطی منحنی بازگشتی برای شناسایی مؤلفه‌های حافظه‌ای بر مبنای تک ثبت»، مجله پردازش علایم و داده‌ها، دوره 12، شماره 2، صفحه 39-52، 1388.
[12] A. Martin, G. Guerrero-Mora, G. Dorantes-Méndez, A. Alba, M. O. Méndez, and I. Chouvarda, "Non-linear analysis of EEG and HRV signals during sleep," in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4174-4177, 2015.
[13] A. Goshvarpour, A. Abbasi, and A. Goshvarpour, "Recurrence Quantification Analysis and Neural Networks for Emotional EEG Classification," Applied Medical Informatics, vol. 38, no. 1, pp. 13, 2016.
[14] عاطفه گشوارپور، عطااله عباسی، عاتکه گشوارپور، «بررسی تفاوت‌های پاسخ به تحریکات تصویری دارای بار احساسی در زنان و مردان با استفاده از آزمون آماری ویلکاکسون»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 687-695، 1396.
[15] K. Ito and Y. Hotta, "EMG-based detection of muscle fatigue during low-level isometric contraction by recurrence quantification analysis and monopolar configuration," in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4237-4241, 2012.
[16] G. Ouyang, X. Zhu, Z. Ju, and H. Liu, "Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot," IEEE journal of biomedical and health informatics, vol. 18, no. 1, pp. 257-265, 2014.
[17] A. Dutta, C. Krishnan, S. S. Kantak, R. Ranganathan, and M. A. Nitsche, "Recurrence quantification analysis of surface electromyogram supports alterations in motor unit recruitment strategies by anodal transcranial direct current stimulation," Restorative neurology and neuroscience, vol. 33, no. 5, pp. 663-669, 2015.
[18] J. Rolink, M. Kutz, P. Fonseca, X. Long, B. Misgeld, and S. Leonhardt, "Recurrence quantification analysis across sleep stages," Biomedical Signal Processing and Control, vol. 20, pp. 107-116, 2015.
[19] J. Sprott and A. Xiong, "Classifying and quantifying basins of attraction," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 25, no. 8, pp. 083101, 2015.
[20] Y. Guo, G. R. Naik, S. Huang, A. Abraham, and H. T. Nguyen, "Nonlinear multiscale Maximal Lyapunov Exponent for accurate myoelectric signal classification," Applied Soft Computing, vol. 36, pp. 633-640, 2015.
[21] E. Conte et al., "Chaos, Fractal and Recurrence Quantification Analysis of Surface Electromyography in Muscular Dystrophy," World Journal of Neuroscience, vol. 5, no. 04, pp. 205, 2015.
[22] S. P. Arjunan and D. K. Kumar, "Fractals and Electromyograms," in The Fractal Geometry of the Brain: Springer, pp. 445-455, 2016.
[23] A. Bhaduri and D. Ghosh, "Quantitative assessment of Heart Rate Dynamics during meditation: An ECG based study with Multi-fractality and visibility graph," Frontiers in physiology, vol. 7, 2016.
[24] R. Sharma and R. B. Pachori, "Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions," Expert Systems with Applications, vol. 42, no. 3, pp. 1106-1117, 2015.
[25] G. Boccia et al., "Muscle fiber conduction velocity and fractal dimension of EMG during fatiguing contraction of young and elderly active men," Physiological measurement, vol. 37, no. 1, pp. 162, 2015.
[26] S. G. Firooz, F. Almasganj, and Y. Shekofteh, "Improvement of automatic speech recognition systems via nonlinear dynamical features evaluated from the recurrence plot of speech signals," Computers & Electrical Engineering, vol. 58, pp. 215-226, 2017.
[27] C. P. Robinson, B. Li, Q. Meng, and M. T. Pain, "Pattern Classification of Hand Movements using Time Domain Features of Electromyography," in Proceedings of the 4th International Conference on Movement Computing, pp. 27, 2017.
[28] A. Saikia, S. Mazumdar, N. Sahai, S. Paul, and D. Bhatia, "Comparative study and feature extraction of the muscle activity patterns in healthy subjects," in Signal Processing and Integrated Networks (SPIN), 3rd International Conference on, pp. 147-151, 2016.
[29] F. Takens, "Detecting strange attractors in turbulence," Lecture notes in mathematics, vol. 898, no. 1, pp. 366-381, 1981.
[30] A. Naït-Ali, Advanced biosignal processing. Springer Science & Business Media, 2009.
[31] M. B. Kennel, R. Brown, and H. D. Abarbanel, "Determining embedding dimension for phase-space reconstruction using a geometrical construction," Physical review A, vol. 45, no. 6, pp. 3403, 1992.
[32] A. Chaou, A. Mekhaldi, and M. Teguar, "Recurrence quantification analysis as a novel LC feature extraction technique for the classification of pollution severity on HV insulator model," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 6, pp. 3376-3384, 2015.
[33] R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, "A comparison of waveform fractal dimension algorithms," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 2, pp. 177-183, 2001.
[34] T. Higuchi, "Approach to an irregular time series on the basis of the fractal theory," Physica D: Nonlinear Phenomena, vol. 31, no. 2, pp. 277-283, 1988.
[35] H. Hermens, B. Freriks, R. Merletti, D. Stegerman, J. Block, and A. Gre, "SENIAM: European recommendations for surface electromyography Roessingh Research and Development, Enschede," ed, 2013.
[36] K. R. Holzbaur, W. M. Murray, and S. L. Delp, "A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control," Annals of biomedical engineering, vol. 33, no. 6, pp. 829-840, 2005.
[37] F. D. Farfán, J. C. Politti, and C. J. Felice, "Evaluation of EMG processing techniques using information theory," Biomedical engineering online, vol. 9, no. 1, pp. 72, 2010.
[38] G. Ouyang, X. Li, C. Dang, and D. A. Richards, "Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats," Clinical Neurophysiology, vol. 119, no. 8, pp. 1747-1755, 2008.
[39] N. Marwan, "Cross Recurrence Plot Toolbox for MATLAB," Reference Manual, vol. 5, 2013.