مکان‌یابی تجهیزات کنترلی و حفاظتی با رویکرد خودترمیم اتوماسیون شبکه توزیع هوشمند

نوع مقاله : علمی-پژوهشی

نویسندگان

محور شبکه‌های هوشمند انرژی، کریتک، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

 اتوماسیون شبکه توزیع انرژی الکتریکی، راه‌کاری جهت دست‌یابی به حد مناسبی از پایایی است. یکی از ویژگی‌های مهمی که اتوماسیون شبکه توزیع ایجاد می‌کند، توان خودترمیمی در این شبکه‌ها است. توان خودترمیمی یک شبکه، مستلزم به‌کارگیری تجهیزات مختلفی ازجمله تجهیزات حفاظتی و کنترلی است. مشارکت اصلی این مقاله، ارائه مدلی جامع برای نوع‌سنجی و مکان‌یابی تجهیزات فوق‌الذکر، با در نظرگرفتن ترتیب و هماهنگی میان اجزاء و در نظرگرفتن خطاهای گذرا و دائم، در قالب یک برنامه‌ریزی محدب است. از طرفی، با تحلیل حساسیت نسبت به بیشینه سرمایه‌گذاری اولیه و ضرایب حساسیت تعریف‌شده در تابع هدف، که بخش‌های تابع هدف را وزن­دهی می­کنند، تحلیل جامعی از تأثیر به‌کار‌گیری تجهیزات مذکور در شبکه توزیع ارائه ‌شده­است. همچنین در حل‌ برنامه‌ریزی ارائه‌شده از حل­کننده­ی قدرتمند BONMIN در نرم‌افزار گمز استفاده ‌شده­است.

کلیدواژه‌ها


عنوان مقاله [English]

Allocation of controller and protective devices with the self-healing approach in smart distribution network

نویسندگان [English]

  • A. Shahbazian
  • A. Fereidunian
Center for Research and Technology, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

One of the preeminent features of distribution network automation to enhance the reliability is self-healing ability in these networks. Self-healing ability of a network requires protective and control equipment. The main contribution of this paper is to provide a comprehensive model for the measurement and location of the aforementioned equipment, taking into account the arrangement and coordination between the components and the consideration of momentary and permanent faults in the form of convex programming. Planning follows the optimality of a function that consists of different parts. The first part of the objective function is to optimize the economic index, including the cost of installing and annual repairing of equipment and the cost of customer blackout time during the study period. The second and third parts of the objective function provide the optimality of mean indexes of system interruption duration and momentary interruptions frequency mean, respectively. On the other hand, by analyzing the sensitivity to the maximum initial investment and the sensitivity coefficients defined in the objective function that weigh the parts of the target function, a comprehensive analysis of the impact of the using the equipment above on the distribution network is provided. The problem has been solved by BONMIN solver using General Algebraic Modeling System (GAMS) optimization software.

کلیدواژه‌ها [English]

  • Smart distribution network automation
  • self-healing
  • reliability
  • recloser
  • fuse
  • remote control switch
  • manual switch
[1]      Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Elect, Self-Heals, Delivery and Energy Reliability, 2007.
[2]      R. E. Brown, Electric Power Distribution Reliability, CRC press, 2002.
[3]      Thomas, Ponny. Evaluating an empirical relationship between recloser placement and reliability improvement in distribution networks. Ph.D. Thesis, University of Johannesburg, 2016.
[4]ع.شهبازیان، ع.فریدونیان،«برنامه‌ریزی خطی مکان‌یابی و نوع‌سنجی کلیدهای کنترل از راه دور و کنترل دستی، برای بهبود پایایی شبکه‌های توزیع هوشمند»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 4، شماره پیاپی1615-1605، زمستان 1397.
[5]      Izadi, Milad, et al."A multistage MILP-based model for integration of remote control switch into distribution networks."Probabilistic Methods Applied to Power Systems (PMAPS), 2016 International Conference on. IEEE, 2016.
[6]      A. Fereidunian, M.M Hosseini, and M. Abbasi Talabari, “Toward Self-financed Distribution Automation Development: Time Allocation of Automatic Switches Installation in Electricity Distribution Systems,” IET Generation, Transmission & Distribution,vol. 11, no. 13, pp. 3350-3358, 2017.
[7]      Xu,Yin, et al. “Placement of remote-controlled switches to enhance distribution system restoration capability,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1139-1150, 2016.
   [8]      A. Shahsavari, A. Fereidunian, S.M. Mazhari, “A joint automatic and manual switch placement within distribution systems considering operational probabilities of control sequences,” International Transactions on Electrical Energy Systems, vol.25, no. 11, pp. 2745–2768, 2015.
   [9]      J. R. Bezerra, G. C. Barroso, R. P. S. Leão and R. F. Sampaio, “Multiobjective Optimization Algorithm for Switch Placement in Radial Power Distribution Networks,” IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 545-552, 2015.
[10]      A. Abiri-Jahromi, M. Fotuhi-Firuzabad, M. Parvania and M. Mosleh, “Optimized Sectionalizing Switch Placement Strategy in Distribution Systems,” in IEEE Transactions on Power Delivery, vol. 27, no. 1, pp. 362-370, 2012.
[11]      H. Dezaki, A. Abyaneh, A. Agheli, K. Mazlumi, “Optimized Switch Allocation to Improve the Restoration Energy in Distribution Systems,” Journal of Electrical Engineering, vol. 63, no. 1, pp. 47–52, 2012.
[12]      D.P. Bernardon, M. Sperandio, V.J. Garcia, L.N. Canha, A. Abaide, E.F.  BoeckDaza, “AHP Decision- Making Algorithm to Allocate Remotely Controlled Switches in Distribution Networks,” IEEE Transactions on Power Delivery, vol. 26, no. 3, pp.1884-1892, 2011.
[13]      I. G. Sardou, M. Banejad, R. Hooshmand, A. Dastfan, “Modified shuffled frog leaping algorithm for optimal switch placement in distribution automation system using a multi-objective fuzzy approach,” IET Generation, Transmission & Distribution vol. 6, no. 6, pp. 493-502, 2012.
[14]      H. Falaghi, M. R. Haghifam, Ch. Singh, “Ant Colony Optimization-Based Method for Placement of Sectionalizing Switches in Distribution Networks Using a Fuzzy Multi objective Approach,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 268-276, 2009.
[15]      A. Moradi, M. Fotuhi-Firuzabad, “Optimal Switch Placement in Distribution Systems Using Trinary Particle Swarm Optimization Algorithm,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 271-279, 2008.
[16]      L. Silva, R. Pereira, J. Rivier Abbad, J. Mantovani, “Optimized placement of control and protective devices in electric distribution systems through reactive tabu search algorithm,” Electric Power Systems Research,  vol.78, no. 3 pp. 372–381, 2008.
[17]      C.S. Chen, C.H. Lin, H.J. Chuang, C.S. Li, M.Y. Huang  and Ch.W. Huang, “Optimal Placement of Line Switches for Distribution Automation Systems Using Immune Algorithm,” IEEE Trans. on Power System, vol. 21, no. 3, pp. 1209-1217, 2006.
[18]      Y. Mao, Protection System Design for Power Distribution Systems in the Presence of Distributed Generation, Ph.D. Thesis, Faculty of Drexel University, 2005.  
[19]      P. M. S. Carvalho, L. A. F. Ferreira and A. J. C. da Silva, “A decomposition approach to optimal remote controlled switch allocation in distribution systems,” IEEE Transa. on Power Delivery, vol. 20, no. 2, pp. 1031-1036, 2005.
[20]      J.-H. Teng, Y.-H. Liu, “A novel ACS-based optimum switch relocation method,” IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 113–120, 2003.
[21]      J. H, Teng and C. N. Lu, “Feeder - Switch Reallocation for Customer Interruption Cost Minimization,” IEEE Trans. on Power Delivery, vol. 17, pp. 254-259, 2002.
[22]      Ying. He, G. Anderson, and R.N. Allan, “Determining optimum location and number of automatic switching devices in distribution systems,” Proceeding of the IEEE power of Tech’99 Conference, Budapest, Hungry, pp. 182-186,1999.
[23]      G. Celli, F. Pilo, “Optimal sectionalizing switches allocation in distribution networks,” IEEE Transaction Power Systems, vol. 14, no. 3, pp. 1167–1172, 1999.
[24]      G. Celli, F. Pilo, “Optimal sectionalizing switches allocation in distribution networks,” IEEE Transaction Power Delivery, vol, 14, no. 3, pp.1167-1172, 1999.
[25]      P. Wang, R. Billinton, “Demand-side optimal selection of switching devices in radial distribution system planning,” IEE Proceedings - Generation, Transmission and Distribution, vol. 145, no. 4, pp. 409-414, 1998.
[26]      R. Billinton, S. Jonnavithula, “Optimal switching device placement in radial distribution systems,” IEEE Transaction Power Systems, vol. 11, no. 3, pp. 1646–1651, 1996.
[27]      G. Levitin, S. Mazal-Tov, D. Elmakis, “Optimal sectionalizer allocation in electric distribution systems by genetic algorithm,” Electric Power Systems Research, vol.31, no. 2, pp. 97-102, 1994.
[28]      J. M. Sohn, S. R. Nam, J. K. Park, “Value-based radial distribution system reliability optimization,” in IEEE Trans. on P. S., vol. 21, no. 2, pp. 941-947, 2006.
[29]      Ž. Popović, S. Knežević and B. Brbaklić, “Optimal number, type and location of remotely controlled and supervised devices in distribution networks,” IEEE Eindhoven PowerTech, Eindhoven, pp. 1-6, 2015.
[30]      Z. Popovic, B. Brbaklic, S. Knezevi, “A mixed integer linear programming based approach for optimal placement of different types of automation devices in distribution networks,” Electric Power Systems Research, vol. 148, pp. 136-146, 2017.
[31]      Z. Li, X. Yuqin, W. Zengping, “Research on optimization of recloser placement of DG-enhanced distribution networks,” 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjuing, pp. 2592-2597, 2008.
[32]      A. Pregelj, M. Begovic and A. Rohatgi, “Recloser allocation for improved reliability of DG-enhanced distribution networks,” in IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1442-1449, 2006.
[33]      A. Pombo, Vieira, João Murta-Pina, V. Fernão Pires, “A multiobjective placement of switching devices in distribution networks incorporating distributed energy resources,” Elec. Power Sys., vol. 130, pp. 34-45, 2016.
[34]      G. D. Ferreira, A. S. Bretas and G. Cardoso, "Optimal distribution protection design considering momentary and sustained reliability indices," 2010 Modern Electric Power Systems, Wroclaw, pp. 1-8, 2010.
[35]      S. kh. A. Attari, et al, “A Novel Method Based on Teaching-Learning-Based Optimization for Recloser Placement with Load Model Consideration in Distribution System,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 2, pp. 1-10, 2016.
[36]      K. V. R. Gadiraju and M. R. Vallem, "Methods for reducing momentary interruptions in distribution systems," 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, pp. 1-6, 2012.
[37]      L. Wang and C. Singh, “Reliability-Constrained Optimum Placement of Reclosers and Distributed Generators in Distribution Networks Using an Ant Colony System Algorithm,” in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 6, pp. 757-764, 2008.
[38]      A. Alam, V. Pant, B. Das, “Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates,” Electric Power Systems Research, vol. 140, pp. 619-630, 2016.
[39]      W. Tippachon, D. Rerkpreedapong, “Multi-objective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization,” Electric Power Systems Research, vol.79, pp. 1171–1178, 2009.
[40]      Karpov, Anton I., and Dmitry A. Akimov. "Integral indicators improvement (SAIFI) of power supply reliability in electric distribution systems based on reclosers placement optimization." Young Researchers in Electrical and Electronic Engineering (EIConRus),2018 IEEE Conference of Russian, 2018.
[41]      Almeida, Carlos Frederico Meschini, Gabriel Albieri Quiroga, Henrique Kagan, and Nelson Kagan. "Optimal Allocation of Automatic Reclosers" In Electric Distribution Network Planning, pp. 355-381. Springer, Singapore, 2018.
[42]      Heidari, A., Dong, Z. Y., Zhang, D., Siano, P., & Aghaei, J, “Mixed-Integer Nonlinear Programming Formulation for Distribution Networks Reliability Optimization,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp.  1952-1961, 2018.
[43]      M. Tawarmalani, N. V. Sahinidis, “A polyhedral branch-and-cut approach to global optimization,” Mathematical Programming, vol. 103, no. 2, pp. 225-249, 2005.
[44]      س.عباسپور، ک.زارع، ب.محمدی ایواتلو، «ارزیابی جنبه‌های فنی و اقتصادی شبکه توزیع با هدف توسعه DG بر مبنای کاربرد مدیریت اکتیو در شبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 4، شماره پیاپی70، زمستان 1393.