طراحی کنترل‌کننده مقاوم برای دسته‌ای از سیستم‌های غیرخطی متغیر با زمان با رویکرد بهینگی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق و الکترونیک - دانشگاه صنعتی شیراز

چکیده

چکیده: در این مقاله، یک کنترل­کننده جدید برای پایدارسازی مجانبی دسته­ای از سیستم­های غیرخطی متغیر با زمان در حضور عدم­قطعیت­های مدل و اغتشاشات خارجی، با رویکرد بهینگی ارائه می­شود. کنترل­کننده پیشنهادی، دارای دو بخش نامی و مقاوم است که در طراحی هر دو بخش آن، ایده­های جدیدی ارائه شده است. در قسمت اول، تابع لیاپانوف کنترلی جدیدی برای طراحی کنترل­کننده نامی ارائه می­شود. ساختار تابع لیاپانوف کنترلی پیشنهادی، متفاوت از نسخه­های معمول تابع­های لیاپانوف کنترلی است. این تابع به­نحوی طراحی می­شود که سطح لغزش به­طور مستقیم در آن ظاهر می­شود و بدین­ترتیب، تلفیق بخش مقاوم (که براساس تکنیک کنترل مد لغزشی طراحی می­شود) با بخش نامی را ممکن می­سازد. این تلفیق، منجر­به یک قانون کنترلی زیربهینه متفاوت می­شود که بخش گسسته آن براساس مقدار لحظه­ای سطح لغزش سوئیچ می­کند و ترم­های پیوسته براساس رویکرد بهینگی طراحی می­شود. در انتهای مقاله نیز، به­منظور تصدیق کارایی و عملکرد رویکرد پیشنهادی و تایید دستاوردهای تئوری، این کنترل­کننده به یک سیستم پاندول اینرسی غیرخطی متغیر با زمان اعمال و نتایج شبیه­سازی ارائه می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Roust Controller Design for a Class of Nonlinear Time-Varying Systems with Optimality Approach

نویسندگان [English]

  • F. Pishkari
  • T. , Binazadeh
Faculty of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran,
چکیده [English]

:In this paper, a novel controller is presented with an optimal approach for asymptotic stabilizing of a class of nonlinear time-varying systems in presence of model uncertainties and external disturbances. The proposed controller has two nominal and robust parts and there are new ideas in designing of both of them. In the first part, a new ccontrol Lyapunov function is presented for the nominal controller design. The suggested structure of the proposed control Lyapunov function is different from the common versions. This function is designed in a way that a sliding surface equation is appeared in it directly and therefore, provides the possibility of combining the robust part (which is designed based on sliding mode control technique) with nominal one. This combination leads to a different sub-optimal control law where its discontinuous part switches based on the moment value of the sliding surface and the continuous terms will be designed based on the optimality approach. At the end of the paper, this controller is applied to a nonlinear time-varying inertia pendulum and the simulation results are given to confirm the performance and efficiency of proposed approach and verifying the theoretical achievements.

کلیدواژه‌ها [English]

  • Control lyapunov function (CLF)
  • optimality approach
  • nonlinear time-varying systems
  • sliding surface
[1]      سمانه محمدپور، طاهره بینازاده، "طراحی کنترل­کننده غیرخطی تطبیقی جهت همزمان سازی مقاوم سیستم­های آشوبی در حضور اشباع محرک" مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1213-1222، 1396.
[2]      H. K. Khalil, Nonlinear Systems. 3rd ed. Prentice Hall, 2002.
[3]      E. Jafari and T. Binazadeh “Modified composite nonlinear feedback control for output tracking of non-step signals in singular systems with actuator saturation,” International Journal of Robust and Nonlinear Control, vol. 28, no. 16, pp. 4885-4899, 2018.
[4]      G.A. Garcia, S. Kashmiri and D. Shukla, “Nonlinear control based on H-infinity theory for autonomous aerial vehicle,” IEEE International Conference on Unmanned Aircraft Systems (ICUAS),2017.
[5]      T. Binazadeh and M. H. Shafiei. “A novel approach in the finite-time controller design,” Systems Science and Control Engineering, vol. 2, no. 1, pp. 119-124, 2014.
[6]      J. Zhao and GP. Liu, “Time-variant consensus tracking control for networked planar multi-agent systems with non-holonomic constraints,” Journal of systems science and complexity, vol. 31, no. 2, pp. 396-418, 2018.
[7]      A. Dastaviz and T. Binazadeh, “Simultaneous stabilization for a collection of uncertain time-delay systems using sliding-mode output feedback control,” International Journal of Control, in press, 2019.
[8]      T. Binazadeh and M. H. Shafiei. “Extending satisficing control strategy to slowly varying nonlinear systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 4, pp. 1071-1078, 2013.
[9]      MG. Plessen, D. Bernardini, H. Esen and A. Bemporad, “Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance,” IEEE Transactions on Control Systems Technology, vol. 26, no. 1, pp. 38-50, 2018.
[10]      T. Binazadeh and M. H. Shafiei, “Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach,” Mechatronics, vol. 23, no. 7, pp. 888-892, 2013.
[11]      R. Bellman, Dynamic Programming, University Press, Princeton,N.J., 1957.
[12]      D. E. Kirk, Optimal Control Theory an Introduction, New York: Prentice Hall, 1970.
[13]      Y. Hu, P. Y. Madec and A. Richou, “A probabilistic approach to large time behavior of mild solutions of HJB equations in infinite dimension,” SIAM Journal on Control and Optimization, vol. 53, no. 1, pp. 378-398, 2015.
[14]      IA. Prado, MD. Pereira, DF. de Castro, DA. dos Santos and JM. Balthazar, “Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle,” ISA Transactions, vol. 77, pp. 188-200, 2018.
[15]      NS. Tripathy, IN. Kar and K. Paul. “Suboptimal robust stabilization of discrete-time mismatched nonlinear system,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 352-9, 2018.
[16]      SP. Zhu and G. Ma, “An analytical solution for the HJB equation arising from the Merton problem,” International Journal of Financial Engineering, vol. 5, no. 1, pp. 185008, 2018.
[17]      T. Cheng, F.L. Lewis and M. Abu-Khalaf, “A neural network solution for fixed-final time optimal control of nonlinear systems,” Automatica, vol. 43, no. 3, pp. 482-490, 2007.
[18]      WY. Tsai and A. Fahim, “A numerical scheme for a singular control problem: Investment–consumption under proportional transaction costs,” Journal of Computational and Applied Mathematics, vol. 333, pp. 170-84, 2018.
[19]      P. Brunovský, A. Černý and J. Komadel, “Optimal trade execution under endogenous pressure to liquidate: Theory and numerical solutions,” European Journal of Operational Research, vol. 264, no. 3, pp. 1159-71, 2018.
[20]      H. Yoshioka and Y. Yaegashi, “Singular stochastic control model for algae growth management in dam downstream,” Journal of biological dynamics, vol. 12, no. 1, pp. 242-70, 2018.
[21]      E.D. Sontag, “A universal construction of artstein's theorem on nonlinear stabilization,” Systems and Control Letters, vol. 13, no. 2, pp. 117-123, 1989.
[22]      E.D. Sontag, “A Lyapunov-like characterization of asymptotic controllability,” SIAM Journal on Control and Optimization, vol. 21, no. 3, pp. 462-471, 1983.
[23]       A. Primbs, Nonlinear Optimal Control: A receding horizon approach. PhD Thesis, California Institute of Technology, 1999.
[24]      علیرضا حکیمی، طاهره بینازاده، "تولید چرخه حدی پایدار و مقاوم در سیستم­های غیرخطی دارای عدم قطعیت با استفاده از کنترل­کننده مد لغزشی"، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 481-489، 1396.
[25]      A. Bellino, A. Fasana, E. Gandino, L. Garibaldi and S. Marchesiello, “A time-varying inertia pendulum: analytical modelling and experimental identification,” Mechanical Systems and Signal Processing, vol. 47, no. 1, pp. 120-138, 2014.
[26]      T. Binazadeh and M. H. Shafiei. "Robust stabilization of uncertain nonlinear slowly-varying systems: application in a time-varying inertia pendulum," ISA Transactions, vol. 53, no. 2, pp. 373-379, 2014.
[27]      W. Gao and Z. P. Jiang, “Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2614-2624, 2018.