حافظه نوری فلش مبتنی بر نور کند در بلورهای فوتونی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق- دانشگاه صنعتی سهند

2 دانشکده مهندسی برق- دانشگاه صنعتی سهند- تبریز- ایران

چکیده

در این مقاله، طراحی و شبیه‌سازی نوع جدیدی از حافظه‌های نوری مبتنی بر نور کند در ساختار بلور فوتونی نوع میله با شبکه شش‌ضلعی برای اولین بار ارائه می‌شود که کنترل فرآیند نوشتن، نگه‌داری و خواندن اطلاعات به صورت مستقل و با تغییر ضریب‌شکست صورت می‌گیرد. حافظه نوری معرفی‌شده از نوع فلش است که بر پایه‌ی مفهوم نور کند در بلورهای فوتونی به‌دست‌آمده و قابلیت کارکرد به صورت موازی و بر اساس روش مالتی‌پلکسینگ طول‌موج را دارد. حافظه برای عملکرد در طول‌موج کاری 1550 نانومتر با پهنای باند 1 نانومتر طراحی شده، هرچند عملکرد ساختار با استفاده از اصل مقیاس‌پذیری در بلورهای فوتونی به محدوده وسیعی از طول‌موج‌های باند مخابرات نوری قابل گسترش است. فاکتور کیفیت در محل سلول حافظه برای ساختار پیشنهادی برابر با 105´3.4 است که با افزایش سایز حافظه قابل ارتقاء است. طول عمر فوتون با لحاظ‌کردن فاکتور کیفیت 105´3.4  برابر با 0.6 نانوثانیه است. ویژگی‌های قابل توجه ساختار پیشنهادی برای حافظه نوری، امکان کنترل مستقل فرایند نوشتن و خواندن اطلاعات، اندازه کوچک، سرعت بالای فرایند خواندن و نوشتن، مدت زمان طولانی برای نگه‌داری حافظه و ایجاد تطبیق ضریب‌شکست گروه تقریباً برابر برای درگاه‌های ورودی/ خروجی و سلول حافظه‌است که باعث افزایش بازده الحاق می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optical Flash Memory based on Slow Light in Photonic Crystals

نویسندگان [English]

  • A. Ebrahimi 1
  • M. Noori 2
1 Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran,
2 Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran,
چکیده [English]

In this article, design and simulation of an optical memory based on slow light phenomenon is presented for the first time in a hexagonal rod-type photonic crystal. The write, storage, and read processes are controlled independently by refractive index change. The proposed flash memory is capable of operating in either parallel form or by taking advantage of wavelength division multiplexing technique. Here, the memory cell is designed to function at l=1550nm, however, the scalability rule in photonic crystals aids to adjust the operating wavelength in a wide optical communication frequency range. The Q-factor of the proposed memory cell is ~3.4´105 and this can be enhanced considering larger memory structure. The photon lifetime of 0.6ns is achieved for the memory cell for Q-factor of about 3.4´105. The fascinating characteristics of the presented optical memory include independently controlled write and read processes, compact size, high-speed operation, long photon lifetime, and perfect group index matching between the memory cell and the input/output ports which enhances the coupling efficiency.

کلیدواژه‌ها [English]

  • Optical flash memory
  • photonic crystal
  • slow light
  • quality factor
[1]      silicon chips,” Proc. IEEE, vol. 97, pp. 1166–1185, 2009.
[2]      J. B. Kurgan, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis”, Journal of Optical Society of America B, vol. 22, pp. 1062-1074, 2005.
[3]      C. Liu, Z. Dutton, C. H. Behrouz, and L. V. Hua, “Observation of coherent optical information storage in an atomic medium using halted light pulses”, Nature, vol. 409, pp. 490-493, 2001.
[4]      I. Novikova, R. L. Walworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms”, Laser Photon. Rev. vol. 6, p. 333, 2012.
[5]      Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultra-cold ladder-type atomic system”, Phys. Rev. A, vol. 89, p. 023835, 2014.
[6]      H. H. Jen, Bo Xiong, Ite A. Yu, Daw-Wei Wang, “Electromagnetic induced transparency and slow light in interacting quantum degenerate atomic gases”, Journal of Optical Society of America B, vol. 30, p. 2855, 2013.
[7]      R. Ilia, C. Erich, T. Petrich, and F. Leader, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B, vol. 77, p. 115124, 2008.
[8]      B. Corcoran, C. Monet, C. Grilled, D. J. Moss, B. J. Eagleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nature Photonics, vol. 3, pp. 206–210, 2009.
[9]      R. S. Tucker, P.-C. Ku, and C. J. Chang-Husain, “Slow light optical buffers-capabilities and fundamental limitations,” J. Light. Technol., vol. 23, pp. 4046–4066, 2005.
[10]      M. Fleischhauer, A. Imamoglu, and J. P. Maragos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. vol. 77, pp. 1-40, 2005.
[11]      C. Simon, M. Afzelius, J. Ape, A. B. Girodat, S. J. Dewhurst, N. Gisin, C. Hu, F. Jerebko, S. Kriol, J. Mauler, J. Nunn, E. Poliak, J. Rarity, H. Riedmatten, W. Rosenfeld, A. J. Shields, N. Scold, R. M. Stevenson, R. threw, I. Malmsey, M. Weber, H. Weinfurter, J. Wrachtrup,R. J. Young, “Quantum memories: a review based on European integrated projects qubit applications” ,” Euro. Phys. J. D. vol. 58, pp. 1-22, 2010.
[12]      N. Vanguard, C. Simon, H. de Riedmatten, and N. Gisin, Quantum repeaters based on atomic Ensembles and linear optics, Rev. Mod. Phys. vol. 83, pp. 33-80, 2011.
[13]       سعید سیدطاهری، علیرضا عندلیب، «طراحی واتافتگرهای مبتنی بر بلورهای فوتونی با قابلیت تواناسازی مناسب برای سامانه‌های مخابرات نوری»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره2، 1396.
[14]       اشکان قنبری، علی صدر، مهران نیکو، « بیشینه سازی ضریب فشردگی و پهنای باند پالسهای نوری با استفاده از چرپ فرکانسی در فیبرهای فوتونیک کریستال»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره2، 1392.
 
[15]      K. Patnaik, J. Q. Liang, and K. Hakea, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Physics Review A, vol. 66, p. 063808, 2002.
[16]      M. R. Sprague, P. S. Michel Berger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Absolved, P. St. J. Ruse and I. A. Wellesley “Broadband single-photon-level memory in a hollow-core photonic crystal fire,” Nature Photonics, vol. 8, pp. 287-291, 2014.
[17]      M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “ Optical bistable switching action of Si high-Q photonic-crystal nanocavities“, Optics Express, vol. 13, pp. 2678-2687, 2005.
[18]      T. Tanabe, M. Notomi, S. Mitsugi and Eiichi Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip“, Optics Express, vol. 30, pp. 2575-2577, 2005.
[19]      K. Nozaki, A Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato2, Y. Kawaguchi, R. Takahashi and M. Notomi “Ultralow-power all-optical RAM based on nanocavities,” Nature Photonics. vol. 6, pp. 248-252, 2012.
[20]      K. Nozaki, A Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi and M. Notomi “All-optical on-chip bit memory based on ultra-high Q InGaAsP photonic crystal ,” Optics Express, vol. 23, pp. 19382-19387, 2008.
[21]      K. Nozaki, A Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi and M. Notomi “Large-scale integration of wavelength addressable all-optical memories on a photonic crystal chip ,” Nature Photonic, vol. 8, pp. 474-481, 2014.
[22]      M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities ,” Optical Technologies, pp. 1-10, 2008.
[23]      E. Kuramochi, K. Nozaki, A. Shinya, H. Taniyama, K. Takeda , M. Notom “Ultralow bias power all optical photonic crystal memory realized with systematically tuned L3 nanocavity,” Applied Physics Letters, vol. 107, p. 221101, 2015.
[24]      A. Lima Jr.  A.S.B. Sombra “Photonic crystal optical memory,” Applied Physics A, vol. 103, pp. 521-524, 2011.
[25]      A. Geravand, M .Danaie, S. Mohammadi, "All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature", Optics Communications,vol.430,pp. 323-335,  2019.
[26]      C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, Integrated all-photonic non-volatile multi-level memory, Nature Photonics., vol. 9, pp. 725-732, 2015.
[27]      A. M. MorsyR. Biswas, and M. L. Povinelli, “High temperature, experimental thermal memory based on optical resonances in photonic crystal slabs,”, APL Photonics, vol. 4, p. 010804, 2019.
[28]      Q. Zhang, Z. Xia, Y. B. Cheng, M. Gu, “High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites,” Nature Communications, vol, 9(1), p. 1183, 2018.
[29]      X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. "Fast and reliable storage using a 5-bit, non-volatile photonic memory cell," Optica, vol. 6(1), pp. 1-6, 2019. 
[30]      A, Ebrahimi, M, Noori, Ultra-slow light with high NDBP achieved in a modified 𝑊1 photonic crystal waveguide with coupled cavities,). Optics Communications, vol. 424, pp. 37–43, 2018.
[31]      T. Zijlstra, E. van der Drift, M.J.A. de Dood, E. Snoeks, A. Polman, Fabrication of two-dimensional photonic crystal waveguides for 1.5 mm in silicon by deep anisotropic dry etching, J. Vac. Sci. vol. 17(6), pp. 2734–2739, 1999.
[32]      H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. van der Drift, H. W. Salemink, S. Rogge, et al., "Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal," Optics Express, vol. 18, pp. 6437-46, 2010.
[33]      R. Gamernyk, M. Periv,, S. Malynych, ”Nonlinear-optical refraction of silver nanoparticle composites,” Optica Applicata, vol. 44, pp. 89-398, 2014.
[34]      M. Trejo-Duran, et al, “Nonlinear optical properties of Au-nanoparticles conjugated with lipoic acid in water,” Journal of the European Optical Society - Rapid publications, Europe, vol. 9, pp. 14030(1-7), 2014.
[35]      Y. X. Zhang, and Y. H. Wang, “Nonlinear optical properties of metal nanoparticles: a review,” RSC Adv, vol. 7(71), pp. 45129-45144, 2017.
[36]      C. W. Chen, J. L. Tang, K. H. Chung, T. H. Wei, T. H. Huang, “Negative nonlinear refraction obtained with ultrashort laser pulses,” Optics Express, vol. 15(11), pp. 7006-18, 2007.
[37]      Cássio E. A. Santos, Márcio A. R. C. Alencar, Pedro Migowski, Jairton Dupont, and Jandir M. Hickmann, “Nonlocal Nonlinear Optical Response of Ionic Liquids under Violet Excitation,” Advances in Materials Science and Engineering, vol. 2013, pp. 1-6, 2013.
[38]      T. Baba,"Slow light in photonic crystals," Nature Photonics, vol. 2, pp. 465-473, 2008.