طراحی ترکیبی مبدل‌های مستقیم و معکوس: شیوه‌ای نو برای کاهش پیچیدگی سخت‌افزاری سیستم اعداد مانده‌ای

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی کامپیوتر- دانشگاه شهید باهنر کرمان

چکیده

ساختار سخت‌افزاری سیستم اعداد مانده‌ای متشکل از چندین واحد شامل مبدل مستقیم، واحدهای محاسباتی مجزا برای انجام جمع و ضرب پیمانه‌ای و مبدل معکوس است. مبدل‌های مستقیم و معکوس که برای ارتباط سیستم اعداد مانده‌ای با دیگر مدارهای دیجیتال نیاز است، در واقع سربار سیستم می‌باشند زیرا باعت افزایش سطح تراشه و توان مصرفی می‌شوند. این مقاله، برای اولین بار، یک مبدل ترکیبی برای سیستم اعداد مانده‌ای پیشنهاد می‌دهد که مبدل‌های مستقیم و معکوس را از طریق اشتراک سخت‌افزار، یک‌پارچه می‌کند. برای رسیدن به این هدف، از الگوریتم تبدیل درهم مبنا استفاده شده‌است تا روابط حسابی تبدیل معکوس در یک قالب مشابه با روابط حسابی تبدیل مستقیم قرار گیرند. سپس با استفاده از مالتی پلکسرها و تنظیم ورودی‌ها، از سخت‌افزار مبدل معکوس، برای انجام تبدیل مستقیم استفاده شده‌است. نتایج حاصل از پیاده‌سازی VLSI مبدل ترکیبی پیشنهادی مبتنی بر تکنولوژی TSMC-65nm، برای مجموعه پیمانه {2n-1, 22n, 2n+1-1}، نشانگر کاهش حداکثر 19 درصدی سطح تراشه در مقایسه با مجموع مبدل‌های مستقیم و معکوس است. این در حالی است که تأخیر مبدل ترکیبی پیشنهادی حداکثر 10 درصد از تأخیر مبدل معکوس مجزا بیش‌تر شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Hybrid Design of Forward and Reverse Converters: A New Approach to Reduce Hardware Complexity of Residue Number System

نویسندگان [English]

  • A. A. Emrani Zarandi
  • A. Sabbagh Molahosseini
Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

The Residue Number System (RNS) hardware structure consists of several components, including forward converter, separate arithmetic units for performing modular addition and multiplication, and reverse converter. Forward and reverse converters, essential in any RNS to interface with other digital circuits, represent overhead, resulting in larger chip-area and power-consumption. This work, for the first time, proposes a hybrid converter for RNS, which unifies forward and reverse converters by re-using hardware. To achieve this aim, the mixed-radix conversion (MRC) algorithm has been used for putting up the reverse conversion formulas in a similar format to forward conversion formulas. The VLSI implementation results of the proposed hybrid converter based on TSMC-65nm technology for the moduli set {2n−1, 22n, 2n+1−1} show a reduction up to 19% of the required area in comparison to the total area of the forward and reverse converters. However, the delay of the proposed hybrid converter is just 10% higher than individual reverse converter delay.

کلیدواژه‌ها [English]

  • Computer arithmetic
  • digital arithmetic circuits
  • residue number system
  • forward converter
  • reverse converter
  • modular adder
[1]      Systems Design with Special Arithmetic and Number Systems, Springer International Publishing, 2017.
[2]      امیر سزاوار، حسن فرسی، سجاد محمدزاده، «بازیابی تصویر مبتنی بر محتوا با استفاده از شبکه‌های عصبی کانولوشن عمیق»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 4، صفحه 1595-1603، زمستان 1397.
[3]      پرهام درّی، علی قیاسیان، حسین سعیدی، «طراحی و پیاده‌سازی رمزنگار AES در بستر FPGA برای خطوط پرسرعت»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحه 153-167، بهار 1395.
[4]      H.L. Garner, “The residue number system,” IRE Transactions on Electronic Computers, vol. 8, no. 2, pp. 140-147, Jun. 1959.
[5]      C.H. Chang, A.S. Molahosseini, A.A. Emrani Zarandi and T.F. Tay, “Residue number systems: a new paradigm to datapath optimization for low-power and high-performance digital signal processing applications,” IEEE Circuits and Systems Magazine, vol. 15, no. 4, pp. 26-44, Nov. 2015.
[6]      L. Sousa, S. Antão and P. Martins, “Combining residue arithmetic to design efficient cryptographic circuits and systems,” IEEE Circuits and Systems Magazine, vol. 16, no. 4, pp. 6-32, Nov. 2016.
[7]      V. Arrigoni, B. Rossi, P. Fragneto and G. Desoli, “Approximate operations in convolutional neural networks with RNS data representation,” In Proc. of 25th European Symposium on Artificial Neural Networks, Bruges, Belgium, Apr. 26-28 2017.
[8]      K. Navi, A.S. Molahosseini and M. Esmaeildoust, “How to teach residue number system to computer scientists and engineers,” IEEE Transactions on Education, vol. 54, no. 1, pp. 156-163, Feb. 2011.
[9]      S. J. Piestrak, “Design of residue generators and multioperand modular adders using carry-save adders,” IEEE Transactions on Computers, vol. 43, no. 1, pp. 68-77, Jan. 1994.
[10]      A. A. Hiasat, “Arithmetic binary to residue encoders for moduli (2n±2k+1),” IEEE Proceedings - Computers and Digital Techniques, vol. 150, no. 6, pp. 369-374, Nov. 2003.
[11]      C. Efstathiou, N. Moschopoulos, K. Tsoumanis and K. Pekmestzi, “On the design of configurable modulo 2n±1 residue generators,” In. Proc. of 15th Euromicro Conference on Digital System Design, Izmir, Turkey, pp. 50-56, 2012.
[12]      P. M. Matutino, R. Chaves and L. Sousa, “Arithmetic-based binary-to-RNS converter modulo {2n±k} jn-bit dynamic range,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 3, pp. 603-607, Mar. 2015.
[13]      S.J. Piestrak, “A high speed realization of a residue to binary converter,” IEEE Transactions on Circuits and Systems-II, vol. 42, no. 10, pp. 661-663, Oct. 1995.
[14]      Y. Wang, X. Song, M. Aboulhamid and H. Shen, “Adder based residue to binary numbers converters for (2n-1, 2n, 2n+1),” IEEE Transactions Signal Processing, vol. 50, no. 7, pp. 1772-1779, Jul. 2002.
[15]      B. Cao, C. H. Chang and T. Srikanthan, “An efficient reverse converter for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} based on the new Chinese remainder theorem,” IEEE Transaction on Circuits and Systems- I, vol. 50, no. 10, pp. 1296-1303, Oct. 2003.
[16]      A. Hariri, K. Navi, and R. Rastegar, “A new high dynamic range moduli set with efficient reverse converter,” Journal of Computers and Mathematics with Applications, vol. 55, no. 4, pp. 660-668, Feb. 2008.
[17]      A.S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, S. Timarchi, “Efficient reverse converter designs for the new 4-moduli sets {2n–1, 2n, 2n+1, 22n+1–1} and {2n–1, 2n+1, 22n, 22n+1} based on new CRTs,” IEEE Transactions on Circuits and Systems-I, vol. 57, no. 4, pp. 823-835, Apr. 2010.
[18]      L. Sousa and S. Antao, “MRC-based RNS reverse converters for the four-moduli sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1},” IEEE Transactions on Circuits and Systems II, vol. 59, no. 4, pp. 244-248, Apr. 2012.
[19]      A.S. Molahosseini, K. Navi, C. Dadkhah, M. Eshghi. “Efficient MRC-based residue to binary converters for the new moduli sets {22n, 2n−1, 2n+1−1} and {22n, 2n−1, 2n−1−1},” IEICE Transactions on Information and Systems, vol. 92, no. 9, pp. 1628-1638, Sep. 2009.
[20]      A.A.E. Zarandi, A.S. Molahosseini, M. Hosseinzadeh, S. Sorouri, S.F. Antão and L. Sousa, “Reverse converter design via parallel-prefix adders: novel components, methodology and implementations,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 374-378, p. 23, Feb. 2015.
[21]      A.A.E. Zarandi, A.S. Molahosseini, L. Sousa and M. Hosseinzadeh, “An efficient component for designing signed reverse converters for a class of RNS moduli sets with composite form {2K, 2P-1},” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 48-59, Jan. 2017.
[22]      A. S. Molahosseini, A. A. E. Zarandi, P. Martins and L. Sousa, “A Multifunctional Unit for Designing Efficient RNS-Based Datapaths,” IEEE Access, vol. 5, pp. 25972-25986, Dec. 2017.
[23]      P.V.A. Mohan, Residue Number Systems: Theory and Applications, Springer International Publishing, 2016.