کنترل تحمل‌پذیر عیب برای سیستم کنترل تحت‌شبکه چندنرخی با در نظر گرفتن تأخیر القایی طولانی

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه برق- دانشکده فنی و مهندسی- دانشگاه شهید باهنر

چکیده

در این مقاله، یک روش جدید مدل‌سازی و کنترل تحمل‌پذیر عیب برای سیستم کنترل تحت‌شبکه چندنرخی با در نظر گرفتن تأخیر زمانی طولانی ارائه شده است. در ابتدا سیستم کنترل تحت‌شبکه چندنرخی به‌صورت یک سیستم سوئیچ‌شونده با زیرسیستم‌های خطی و یک سیگنال کلیدزنی تصادفی مدل شده است؛ که با در نظر گرفتن سیگنال کلیدزنی (ناشی از تأخیر القایی تصادفی) به‌صورت یک زنجیره مارکوف، مدل سیستم به‌صورت یک سیستم خطی پرشی مارکوف به‌دست می‌آید. سپس یک کنترل‌کننده دینامیکی فیدبک خروجی مستقل از مد، به‌گونه‌ای طراحی شده که سیستم حلقه‌بسته را پایدار نماید. در ادامه، باهدف تحمل‌پذیری سیستم در شرایط رخداد عیب عملگر (یا اغتشاش بار)، از یک عملگر مجازی استفاده می‌شود به‌طوری‌که بازپیکره‌بندی، بدون نیاز به تغییر در کنترل‌کننده اصلی انجام شود. در پایان، فرآیند چهار تانک برای ارزیابی روش‌های مدل‌سازی و کنترل پیشنهادی مورد استفاده قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Fault-Tolerant Control for Multi-rate Networked Control System with Considering Long Time Delay

نویسندگان [English]

  • K. Nekooei
  • M. Maghfoori Farsangi
  • M. Barkhordari Yazdi
Department of Electrical Engineering, Shahid Bahonar University, Kerman, Iran
چکیده [English]

In this paper, a new approach of modeling and fault-tolerant control is presented for multi-rate networked control system (MRNCS) with considering long time delay. Firstly, the MRNCS is modeled as a switched system with linear subsystems and a random switching signal. By considering the switching signal (as the result of random induced delay) as a Markov chain, the model of MRNCS is obtained as a Markovian jump linear system. Then a mode-independent dynamic output feedback controller is designed to stabilize the closed-loop system. In continuation, with the purpose of system tolerance against the actuator fault (or load disturbance), a virtual actuator is used so that the reconfiguration is performed without needing for any changes in the main controller. Finally, the quadruple-tank process is used to validate the proposed modeling and control approaches.

کلیدواژه‌ها [English]

  • Multi-rate networked control system (MRNCS)
  • Random time delay
  • Fault-tolerant control
  • Virtual actuator
  • Markovian jump linear system
  • Linear and bilinear matrix inequality
  • Mode-independent control
[1]      محسن بحرینی, طاهره بینازاده, ملیحه مغفوری فرسنگی و جعفر زارعی, «پایدارسازی تصادفی زمان-محدود توسط فیدبک خروجی برای سیستم کنترل تحت‌شبکه با رویکرد سیستم‌های پرش مارکوف»، مجله مهندسی برق دانشگاه تبریز, جلد 46، شماره 2، صفحه 35-25، تابستان 95.
[2]      D. Zhang, P. Shi, Q.-G. Wang, and L. Yu, “Analysis and synthesis of networked control systems: A survey of recent advances and challenges,” ISA Transactions, vol. 66, pp. 376-392, 2017.
[3]      S. Heijmans, R. Postoyan, D. Nešić, N. Noroozi, and M. Heemels, “Stability analysis of networked linear control systems with direct-feedthrough terms,” Automatica, vol. 96, pp. 186-200, 2018.
[4]      Z. Wei, M. S. Branicky, and S. M. Phillips, “Stability of networked control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99, 2001.
[5]      Y. Tipsuwan, and M.-Y. Chow, “Control methodologies in networked control systems,” Control Engineering Practice, vol. 11, no. 10, pp. 1099-1111, 2003.
[6]      Q. Zhu, and G. Xie, “Analysis and modeling of multi-rate networked control systems with long time delay,” Chinese Control and Decision Conf., pp. 2978-2983, 2012.
[7]      X. z. Liu, Y. p. Dai, and L. Gao, “Fault-tolerant control of networked control systems with time-varying delay,” IEEE Int. Conf. on Control and Automation pp. 750-754, 2013.
[8]      C. Tan, L. Li, and H. Zhang, “Stabilization of networked control systems with both network-induced delay and packet dropout,” Automatica, vol. 59, pp. 194-199, 2015.
[9]      X. Lin, A. Hassibi, and J. P. How, “Control with random communication delays via a discrete-time jump system approach,” American Control Conf., vol. 3, pp. 2199-2204, 2000.
[10]      Y. Geng, and B. Liu, “Guaranteed cost control for the multi-rate networked control systems with output prediction,” IEEE Conf. on Information and Automation, pp. 3020-3025, 2015.
[11]      W.-A. Zhang, and L. Yu, “Modelling and control of networked control systems with both network-induced delay and packet-dropout,” Automatica, vol. 44, no. 12, pp. 3206-3210, 2008.
[12]      H. Wang, B. Zhou, C. Lim, R. Lu, and A. Xue, “H∞ fault-tolerant control of networked control systems with actuator failures,” IET Control Theory & Applications, vol. 8, no. 12, pp. 1127-1136, 2014.
[13]      Z. Qixin, L. Guoping, C. Jianyun, and H. Shousong, “Stability analysis of networked control systems with Markov delay,” Int. Conf. on Control and Automation, vol. 2, pp. 720-724, 2005.
[14]      M. Bahreini, and J. Zarei, “Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback,” ISA Transactions, vol. 86, pp. 153-162, 2019.
[15]      S. Cong, and H. Zheng, “Modelling and performance analysis of networked control systems under different driven modes,” Int. Journal of Computer Applications in Technology, vol. 34, no. 3, pp. 192-198, 2009.
[16]      Z. Qixin, L. Hongli, and H. Shousong, “Uniformed model of networked control systems with long time delay,” Journal of Systems Engineering and Electronics, vol. 19, no. 2, pp. 385-390, 2008.
[17]      Z.-H. Guan, C.-X. Yang, and J. Huang, “Stabilization of Networked Control Systems with Random Delays: A New Multirate Method,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 4204-4209, 2008.
[18]      Q. Zhu, B. Xie, and Y. Zhu, “Hinf control for multi-rate networked control systems with both time-delay and packet-dropout,” Chinese Control and Decision Conf., pp. 1983-1988, 2014.
[19]      Y. M. Zhang, and J. Jiang, “Active fault-tolerant control system against partial actuator failures,” IET Control Theory and Applications, vol. 149, no. 1, pp. 95-104, 2002.
[20]      Y. Zhang, and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229-252, 2008.
[21]      X. Yu, and J. Jiang, “Hybrid Fault-Tolerant Flight Control System Design Against Partial Actuator Failures,” IEEE Transactions on Control Systems Technology, vol. 20, no. 4, pp. 871-886, 2012.
[22]      J. Jiang, and X. Yu, “Fault-tolerant control systems: A comparative study between active and passive approaches,” Annual Reviews in Control, vol. 36, no. 1, pp. 60-72, 2012.
[23]      علی خدادادی, مریم شهریاری کاهکشی و عباس چترایی, «ارائه رویکردی نوین برای طراحی کنترل‌کننده تحمل‌پذیر عیب عملگر بر اساس شناسایی عیب», مجله مهندسی برق دانشگاه تبریز, جلد 48، شماره 2، صفحه 608-595، تابستان 97.
[24]      J. H. Richter, T. Schlage, and J. Lunze, “Control reconfiguration of a thermofluid process by means of a virtual actuator,” IET Control Theory & Applications, vol.1, no. 6, pp. 1606-1620, 2007.
[25]      A. M. Amani, A. Afshar, and M. B. Menhaj, “Fault Tolerant Networked Control Systems subject to Actuator Failure using Virtual Actuator technique,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 5465-5470, 2011.
[26]      M. Yadegar, N. Meskin, and A. Afshar, “Fault-tolerant control of linear systems using adaptive virtual actuator,” Int. Journal of Control, pp. 1-13, 2017.
[27]      M. Yadegar, A. Afshar, and N. Meskin, “Fault-tolerant control of non-linear systems based on adaptive virtual actuator,” IET Control Theory & Applications, vol. 11, no. 9, pp. 1371-1379, 2017.
[28]      J. Cieslak, and D. Henry, “A Switching Fault-Hiding Mechanism based on Virtual Actuators and Dwell-Time Conditions,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 703-708, 2018.
[29]      C. Nespoli, M. M. Seron, and J. e. A. D. Don, “Virtual actuator fault tolerant control approach for Markovian jump linear systems,” Latin American Congress of Automatic Control, 2014.
[30]      J. Song, Y. Niu, J. Lam, and Z. Shu, “A Hybrid Design Approach for Output Feedback Exponential Stabilization of Markovian Jump Systems,” IEEE Transactions on Automatic Control, vol. 63, no. 5, pp. 1404-1417, 2018.
[31]      J. Lofberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” Int. Conf. on Robotics and Automation, pp. 284-289, 2004.
[32]      J. F. Sturm, “Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625-653, 1999.
[33]      N. Sebe, “Sequential Convex Overbounding Approximation Method for Bilinear Matrix Inequality Problems,” IFAC-PapersOnLine, vol. 51, no. 25, pp. 102-109, 2018.
[34]      W. Chiu, “Method of Reduction of Variables for Bilinear Matrix Inequality Problems in System and Control Designs,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1241-1256, 2017.
[35]      S. Xu, and J. Lam, “A survey of linear matrix inequality techniques in stability analysis of delay systems,” Int. Journal of Systems Science, vol. 39, no. 12, pp. 1095-1113, 2008.
[36]      P. Navrátil, L. Pekař, and R. Matušů, “Control of a Multivariable System Using Optimal Control Pairs: A Quadruple-Tank Process,” IEEE Access, vol. 8, pp. 2537-2563, 2020.
[37]      M. S. Mahmoud, and M. H. Baig, “Networked feedback control for nonlinear systems with random varying delays,” Journal of the Franklin Institute, vol. 351, no. 6, pp. 3145-3162, 2014.
[38]      M. S. Mahmoud, and N. B. Almutairi, “Feedback fuzzy control for quantized networked systems with random delays,” Applied Mathematics and Computation, vol. 290, pp. 80-97, 2016.
[39]      M. Arıcı, and T. Kara, “Improved Adaptive Fault-Tolerant Control for a Quadruple-Tank Process with Actuator Faults,” Industrial & Engineering Chemistry Research, vol. 57, no. 29, pp. 9537-9553, 2018.
[40]      M. Arıcı, and T. Kara, “Model reference adaptive control of a quadruple tank process with actuator faults,” Int. Conf. on Electrical and Electronics Engineering, pp. 861-865, 2017.
[41]      J. Berner, K. Soltesz, T. Hägglund, and K. J. Åström, “An experimental comparison of PID autotuners,” Control Engineering Practice, vol. 73, pp. 124-133, 2018.
[42]      K. H. Johansson, “The quadruple-tank process: a multivariable laboratory process with an adjustable zero,” IEEE Transactions on Control Systems Technology, vol. 8, no. 3, pp. 456-465, 2000.
[43]      P. Roy, and B. K. Roy, “Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process,” ISA Transactions, vol. 63, pp. 365-376, 2016.
[44]      M. Veronesi, and A. Visioli, “A Technique for Abrupt Load Disturbance Detection in Process Control Systems,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 14900-14905, 2008.
[45]      M. Buciakowski, M. de Rozprza-Faygel, J. Ochałek, and M. Witczak, “Actuator fault diagnosis and fault-tolerant control: Application to the quadruple-tank process,” Journal of Physics: Conf. Series, vol. 570, no. 8, pp. 082002, 2014.
[30]      Q. Fazal, M. Liaquat, and N. Naz, “Robust fault tolerant control of a DC motor in the presence of actuator faults,” Int. Conf. on Sciences and Techniques of Automatic Control and Computer Engineering, pp. 301-333, 2015.