یک روش جدید برمبنای تبدیل S هایپربولیک اصلاح‌شده برای تمایز خطای داخلی از دیگر شرایط غیرعادی در ترانسفورماتور قدرت

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی - دانشگاه شهید چمران

چکیده

در این مقاله، یک روش جدید برای تمایز خطای داخلی از دیگر شرایط غیرعادی درترانسفورماتورهای قدرت ارائه شده­است. از­آن­جایی­که سیگنال­های جریان دیفرانسیل ناایستا هستند، یک ابزار قدرتمند هم­چون تبدیل S برای تحلیل زمان- فرکانس آن­ها مورد­نیاز است. در ابتدا شبیه­سازی­های مختلفی برای حالت­های خطای داخلی، جریان هجومی، خطای خارجی، اضافه تحریک و فوق اشباع برای شرایط کاری مختلف ترانسفورماتور با در­نظر­گرفتن عوامل مؤثر بر آن با استفاده از نرم افزار PSCAD/EMTDC انجام می­گیرد. پس از آن سیگنال­های جریان دیفرانسیل بدست­آمده، توسط تبدیل S هایپربولیک اصلاح­شده آنالیز می­شوند. از ماتریس تبدیل S هاریپربولیک اصلاح­شده، ویژگی­های مهم استخراج می­شوند و براساس آن­ها شرایط مختلف تشخیص و کلاس­بندی می­گردند. "این ویژگی­ها شامل: انرژی سطح اول کانتور، شاخص واریانس، انحراف معیار فاز مولفه اصلی و هارمونیک دوم و سه معیار ویژه است." فرایند اجرای تبدیلS هاریپربولیک اصلاح­شده و پیاده­سازی الگوریتم پیشنهادی در نرم افزار MATLAB انجام خواهدشد. در این مقاله همه حالت­های گذرای ممکن و اثر اشباع ترانسفورماتورهای جریان در نظر گرفته می­شوند. در­نهایت صحت و دقت روش پیشنهادی با روش­های مختلف در شرایط با نویز و بدون نویز مقایسه می­شوند. نتایج بدست­آمده عملکرد خوب روش پیشنهادی را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Modified Hyperbolic S Transform-Based Method for Discrimination of Internal Fault from Other Abnormal Conditions in Power Transformer

نویسندگان [English]

  • A. Behvandi
  • S. Gh. Seifossadat
  • A. Saffarian
Faculty Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

 In this paper, a new method is presented for discrimination of internal fault other abnormal conditions in power transformers. Since the differential current signals are non-stationary, a powerful tool such as S transform is needed for time- frequency analysis of them. First, by considering the effective factors, different simulations for internal fault, inrush current, external fault, over-excitation and ultrasaturation conditions are performed via PSCAD/EMTDC software in different operating conditions of transformer.Then, the obtained differential current signals are analyzed by modified hyperbolic S transform. Important characteristics are extracted from modified hyperbolic S transform and according to them, different conditions are distinguished and classified. These features include: energy contour of first level, variance index, standard deviation of the fundamental frequency and second harmonic component and three special criteria. The process of modified hyperbolic S transform and performing the proposed algorithm are performed in MATLAB software. In this paper, all of possible transient conditions and effects of the saturation of current transformers are considered. Finally, the accuracy and precision of the proposed method are compared with different methods in conditions with noise and without noise. The results show good performance of the proposed method.

کلیدواژه‌ها [English]

  • Differential protection
  • modified hyperbolic stockwell transform
  • internal fault
  • ultrasaturation
  • over-excitation
[1]      J. L. Blackburn and T. J. Domin, “Protective Relaying: Principles and Applications”, Third Edition. Taylor & Francis, 2006.
[2]      R. P. Medeiros, F. B. Costa and K. M. Silva, “Power Transformer Differential Protection Using the Boundary Discrete Wavelet Transform,” IEEE Transactions on Power Delivery, vol. 31, no. 5, pp. 2083-2095, 2016.
[3]      S.  K.  Murugan, S. P. Simon, P. S. R. Nayak, K. Sundareswaran and N. P. Padhy, “Power transformer protection using chirplet transform,” IET Gener. Transm.Distrib, vol. 10, no. 10, pp. 2520-2530, 2016.
[4]      M. Y. Asrami , M. T. Gorjikolaie, S. M. Razavi and S. A. Gholamian, “A novel intelligent protection system for power transformers considering possible electrical faults, inrush current, CT saturation and over-excitation”, Electrical Power and Energy Systems, vol. 64, pp. 1129–1140, 2015.
[5]      S. Horowitz and A. Phadke, Power System Relaying. Taunton, Somerset: Research studies press, 1992.
[6]       “Ieee guide for protecting power transformers,” IEEE Std C37.91-2008 (Revision of IEEE Std C37.91-2000), pp. 1–139, 2008.
[7]      H. Zhang, P. Liu and O. P. Malik, “A new scheme for inrush identification in transformer protection,” Electric Power System Research, vol. 63, no. 2, pp. 81-86, 2002.
[8]      D. Guillen, H. Esponda, E. Vazquez and G. Idarraga-Ospina, “Algorithm for transformer differential protection based on wavelet correlation modes”, IET Gen. Transm. Distrib., vol. 10, no. 12, pp. 2871-2879, 2016.
[9]      P. B. Thote, M. B. Daigavane, P. M. Daigavane and S. P. Gawande, “An Intelligent Hybrid Approach Using KNN-GA to Enhance the Performance of Digital Protection Transformer Scheme”, Canadian Journal of Electrical and Computer Engineering, vol. 40, no. 3, pp. 151-161, 2017.
[10]      T. Zheng, T. Huang, Y. Ma, Z. Zhang and L. Liu, “Histogram-Based Method to Avoid Maloperation of Transformer Differential Protection Due to Current-Transformer Saturation Under External Faults”, IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 610-619, 2018.
[11]      A. Rahmati and M. Sanaye-Pasand, “Protection of power transformer using multi criteria decision-making,” International Journal of Electrical Power andEnergy Systems, vol. 68, pp. 294-303, 2015.
[12]      S. Hasheminejad and S. Esmaeili, “Transient actions analysis of power transformersbased on S-transform and hidden Markov model”, Int. Trans. Electr. Energy Syst, vol. 24, pp. 826–841, 2014.
[13]      T. Zheng, J. Gu, S. F. Huang, F. Guo and V. Terzija, “A new algorithm to avoid maloperation of transformer differential protection in substations with an inner bridge connection,” IEEE Trans. Power Delivery, vol. 27, no. 3, pp. 1178-1185, 2012.
[14]      K. L. Butler-Purry and M. Bagriyanik, “Characterization of transients in transformers using discrete wavelet transforms,” IEEE Transaction Power System, vol. 18, no. 2, pp. 648-654, 2003.
[15]      A. Aktabi, M. A. Rahman and A. M. Razali, “An experimental implementation of the dq-axis wavelet packet transform hybrid technique for three-phase power transformer protection,” IEEE Transaction Industry. Applications., vol. 50, no. 4, pp. 2919-2927,  2014.
[16]      A. M. Shah, and B. R. Bhalja, “Discrimination between internal faults and other disturbances in transformer using the support vector machine-based protection scheme” IEEE Transaction Power Delivery., vol. 28, no.3, pp. 1508-1515, 2013.
[17]      سجاد باقری، زهرا مروج و گئورک قره­پتیان، « تمایز میان عیوب مکانیکی سیم­پیچ، خطاهای الکتریکی داخلی و خارجی و جریان­های هجومی در ترانسفورماتورها با استفاده از روش ترکیبی»، مجله مهندسی برق دانشگاه تبریز، شماره 1، دوره 48، صفحه 21-32، بهار 1397
[18]      M. Rasoulpoor and M. Banejad, “A correlation based method for discrimination between inrush and short circuit currents in differential protection of power transformer using discrete wavelet transform: Theory, simulation and experimental validation,” International Journal of Electric Power andEnergy Systems, vol. 51, pp. 168-177, 2013.
[19]      S. Jazebi, B. Vahidi, S. H. Hosseinian and J. Faiz, “Magnetizing inrush current identification using wavelet based Gaussian mixture models,” Simulation Modelling Practice and Theory, vol. 17, no. 6, pp. 991-1010, 2009.
[20]      R. Kumar, B. Singh, D. T. Shahani, A. Chandra and K. Al-Haddad, “Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree,” IEEE Transaction Industry Application, vol. 51, no. 1, pp. 2919-2927,  2015.
[21]      M. Biswal and P. K. Dash, “Measurement and classification of simultaneous power signal patterns with an S-transform variant and Fuzzy decision tree,” IEEE Transaction Industry Application , vol. 9, no. 4, pp. 1819–1827, 2013.
[22]      Z. Moravej , A. A. Abdoos and M. Sanaye-Pasand, “Power transformer protection using improved S-transform”, Electric Power Components and Systems, vol. 39, no. 11, pp. 1151-1174, 2011.
[23]      A. Ashrafian, M. Rostami and G. B. Gharehpetian, “Hyperbolic S-transformbased method for classification of external faults, incipient faults, inrush currents and internal faults in power transformers,” IET Generation, Transmission & Distribution, vol. 6, no. 10, pp. 940-950, 2012.
[24]      Z. Moravej, A. A. Abdoos and M. Sanaye-Pasand, “Power transformer protection scheme based on time-frequency analysis,” International Transactions on Electrical Energy Systems, vol. 23, no.4, pp. 473–493, 2013.
[25]      A. Ashrafian, B. Vahidi and M. Mirsalim, “Time–time-transform application to fault diagnosis of power transformers” IET Generation, Transmission & Distribution, vol. 8, no. 6, pp. 1156-1167, 2014.
[26]      H. Dashti and M. Sanaye-Pasand, “Power transformer protection using a multiregion adaptive differential relay,” IEEE Transaction Power Delivery, vol. 29, no. 2, pp. 777-785, 2014.
[27]      W. Zhang, Q. Tan, S. Miao, L. Zhou and P. Liu, “Self-adaptive transformer differential protection”, IET Generation, Transmission & Distribution, vol. 7, no. 1, 2013.
[28]      X. Lin and P. Liu, “The Ultra-Saturation Phenomenon of Loaded Transformer Energization and Its Impacts on Differential Protection”, IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1265-1272, 2005.
[29]      B. Noshad, M. Razaz, S. G. Seifossadat, “A new algorithm based on Clarke's transform and discrete wavelet transform for the differential protection of three-phase power transformers considering the ultra-saturation phenomenon”, Electric Power Systems Research, vol. 110, pp. 9-24, May 2014.
[30]      A. Moukadem, D. Q. Abdeslam and A. Dieterlen, “Time–Frequency Domain for Segmentation and Classification of Non-Stationary Signals, Wiley-ISTE, ISBN978-1-84821-613-6, 2014.
[31]      R. G. Stockwell, L. Mansinha and R. Lowe, “Localization of the complex spectrum: the Stransform”, IEEE Transaction Signal Processing, vol.44, pp.998–1001, 1996.
[32]      M. J. Reddy, R. K. Raghupathy, K. Venkatesh and D. Mohanta, “Power qual-ity analysis using discrete orthogonal s-transform”, Digital Signal Processing. vol. 23, no. 2, pp. 616–626, 2013.
[33]      P. D. McFadden, J. G. Cook and L. M. Forster, “Decomposition of gear vibration signals by the generalized S transform”, Mechanical and System Signal Processing, vol. 13, no.5, pp. 691-707, 1999.
[34]      C. R. Pinnegar, L. Mansinha, “The S-transform with windows of arbitrary and varying shape,” Geophysics, vol. 68, no. 1, pp. 381-385,January 2003.
[35]      C. R. Pinnegar, L. Mansinha, “The bi-Gaussian S-transform,” Siam Journal Science Computing, vol. 24, no. 5, pp. 1678–1692, 2003.
[36]      C. R. Pinnegar and L.Mansiha, “Time Local Spectral Analysis for  Nonstationary Time Series: The S Transform for Noisy Signals”, Fluctuation and Noise Letters, vol. 3, no. 3, pp. 357-364, 2003.
[37]      بهرام نوشاد، مرتضی رزاز و سیدقدرت­اله سیف­السادات، «تعیین یک مدل دقیق ترانسفورماتور جریان برای آنالیز حالت­های گذرای الکترومغناطیسی در طی خطاهای الکتریکی»، مجله مهندسی برق دانشگاه تبریز، شماره 2، دوره 41، صفحه 77-87، پاییز 1390
[38]      D. C. Jiles, J. B. Thoelke and M. Devine, “Numerical determination of hysteresis parameters using the theory of ferromagnetic hysteresis,” IEEE Transactions on Magnetics, vol. 28, no. 1, pp. 27–35, 1992.
[39]      R. P. Medeiros, F. B. Costa, “A Wavelet-Based transformer differential protection with differential current transformer saturation and cross country fault detection”, IEEE Transaction on Power Delivery,vol. 33, no. 2, pp. 789-799, 2018.
[40]      Transformer Differential Protection Relay, AREVA, KBCH 120, 130, 140, service manual, KBCH/EN M/G11, 2001, http://www.areva-td.com/contactcentre.