تخمین حالت مقاوم سیستم‌های توزیع در حضور منابع تجدیدپذیر و با درنظرگرفتن وزن‌های متغیر اندازه‌گیرها

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی برق - دانشکده انرژی - دانشگاه صنعتی کرمانشاه

چکیده

با حرکت به‌سمت هوشمندنمودن سیستم‌های قدرت الکتریکی و استفاده از منابع تجدیدپذیر، روزبه‌روز بر پیچیدگی این سیستم‌ها افزوده می‌شود. از طرفی، به‌منظور انجام موفقیت‌آمیز وظایف کنترلی و مدیریتی، دقت مقادیر الکتریکی تخمین زده‌شده مسئله‌ای مهم و اساسی خواهد بود. تخمین حالت از این دیدگاه نقش مهمی را ایفا کرده و به‌عنوان حلقه نهایی زنجیره اندازه‌گیری در نظر گرفته می‌شود. اثرگذاری خطاهای دستگاه‌های اندازه‌گیری به‌گونه‌ای می‌باشد که مستقیماً بر دقت نتایج تأثیر خواهد گذاشت. بنابراین، ارائه روش‌هایی جهت مقاوم‌نمودن الگوریتم‌های تخمین حالت نسبت به خطاهای اتفاق‌افتاده بر ورودی‌های این مسئله لازم و ضروری است. در این مقاله، روشی جهت مقاوم‌سازی الگوریتم تخمین حالت سیستم‌های توزیع ارائه می‌شود که دستیابی به تحلیل‌هایی واقعی و دقیق از شرایط بهره‌برداری یک سیستم توزیع را میسر می‌سازد. بدین ترتیب، با استفاده از تابع نمایی برای تنظیم وزن دستگاه‌های اندازه‌گیری سیستم و مدل‌سازی ترکیب گوسی به‌صورت هم‌زمان به ارائه الگوریتمی در قالب پوشش خطای اندازه‌گیرهای نصب‌شده در حضور نیروگاه‌های بادی و بارهایی با توزیع احتمالی غیرگوسی پرداخته می‌شود. به‌منظور بررسی الگوریتم پیشنهادی، مطالعه بر روی دو سیستم تست 33 و 50 شینه انجام شده و نتایج به‌دست‌آمده بررسی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Distribution Systems Robust State Estimation in the Presence of Renewable Resources and Considering the Variable Weights of Measurements

نویسندگان [English]

  • M. Goodarzdehghani
  • M. Ahmadi Jirdehi
Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran
چکیده [English]

The complexity of power systems increases with the advent of intelligent electrical power systems and the use of renewable resources. In order to successfully carry out control and management tasks, the accuracy of the estimated electrical quantities will be an important issue. State estimation plays an important role in this view and is considered as the final loop of the measurement chain. The effect of the errors of measuring devices is such that it directly affects the accuracy of the results, so providing methods to improve robustnessof the estimation algorithm is necessary in relation to the errors in the inputs of this problem. In this paper, a method is proposed to improve the distribution system state estimation (DSSE) algorithm, which provides real and accurate analyzes of the operating conditions of an active distribution system. Thus, in this paper is presented an algorithm using exponential function for weighting tuning of measurement sets of the power system in the form of measurement errors in the presence of wind power plants and loads by non-Gaussian uncertainties and probability functions. For analysis of proposed algorithm, simulations results are carried on IEEE 33-bus and 50-bus distribution systems and demonstrate the effectiveness of the proposed method.

کلیدواژه‌ها [English]

  • Smart grid
  • non-gaussian uncertainty
  • robust state estimation
  • variable weights
  • renewable energy
[1]           M. McGranaghan, D. Houseman, L. Schmitt, F. Cleveland, and E. Lambert, “Enabling the integrated grid: leveraging data to integrate distributed resources and customers,” IEEE Power and Energy Magazine, vol. 14, no. 1, pp. 83-93, 2016.
[2]           M. Powalko et al., “System observability indices for optimal placement of PMU measurements,” presented at the Power and Energy Society General Meeting, 2012 IEEE, 2012.
[3]           C. Hird, H. Leite, N. Jenkins, and H. Li, “Network voltage controller for distributed generation,” IEE Proceedings-Generation, Transmission and Distribution, vol. 151, no. 2, pp. 150-156, 2004.
[4]           J. Fan and S. Borlase, “The evolution of distribution," IEEE Power and Energy magazine, vol. 7, no. 2, pp. 63-68, 2009.
[5] خلیل گرگانی فیروزجاه، «تخصیص بهینه واحدهای اندازه‌گیری جریان در شبکه قدرت با هدف افزایش دقت در محل‌یابی هوشمند خطا» مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحات 208-197، 1395.
[6] مهرداد طرفدارحق، مهدی احمدی جیردهی، پدرام صالح‌پور، بابک اسدزاده و افشین روشن‌میلانی، «پیاده‌سازی برنامه تخمین حالت در مرکز دیسپاچینگ شمال‌غرب کشور» مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 1، صفحات 51-43، 1394.
[7] سهیل مرادی، رضا محمدی چبنلو و نوید تقی‌زادگان کلانتری، «مکان‌یابی بهینه واحدهای اندازه‌گیری فازوری برای مکان‌یابی خطا در شبکه قدرت با درنظر گرفتن باس‌های تزریق صفر و خروج تکی خطوط» مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحات 277-267، 1395.
[8]           Y. Yao, X. Liu, and Z. Li, “Robust Measurement Placement for Distribution System State Estimation," IEEE Transactions on Sustainable Energy, 2017.
[9]           P. A. Pegoraro et al., “Bayesian Approach for Distribution System State Estimation With Non-Gaussian Uncertainty Models,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 11, pp. 2957-2966, 2017.
[10]         A. Angioni et al., “Bayesian distribution system state estimation in presence of non-Gaussian pseudo-measurements,” in Applied Measurements for Power Systems (AMPS), 2016 IEEE International Workshop on, 2016, pp. 1-6: IEEE.
[11]         H. Wang and N. N. Schulz, “A revised branch current-based distribution system state estimation algorithm and meter placement impact,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 207-213, 2004.
[12]         M. E. Baran, J. Jung, and T. E. McDermott, “Including voltage measurements in branch current state estimation for distribution systems,” in Power & Energy Society General Meeting, 2009. PES'09. IEEE, 2009, pp. 1-5: IEEE.
[13]         M. T. Hagh and M. A. Jirdehi, “A robust method for state estimation of power system with UPFC,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 18, no. 4, pp. 571-596, 2010.
[14]         M. A. Jirdehi and M. T. Hagh, “Identification and estimation of branch parameter errors: a new three stages method,” in Electrical Engineering (ICEE), 2014 22nd Iranian Conference on, 2014, pp. 568-573: IEEE.
[15]         M. A. Jirdehi, M. T. Hagh, and K. Zare, “Simultaneous identification and correction of measurement and branch parameter errors,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 22, no. 4, pp. 858-873, 2014.
[16]         S. Ma, B. Chen, and Z. Wang, “Resilience enhancement strategy for distribution systems under extreme weather events,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1442-1451, 2018.
[17]         A. K. Ghosh, D. L. Lubkeman, M. J. Downey, and R. H. Jones, “Distribution circuit state estimation using a probabilistic approach,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 45-51, 1997.
[18]         R. Singh, B. C. Pal, and R. A. Jabr, “Statistical representation of distribution system loads using Gaussian mixture model,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 29-37, 2010.
[19]         J. Liu, F. Ponci, A. Monti, C. Muscas, P. A. Pegoraro, and S. Sulis, “Optimal meter placement for robust measurement systems in active distribution grids,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 5, pp. 1096-1105, 2014.
[20]         G. Valverde, A. T. Saric, and V. Terzija, “Stochastic monitoring of distribution networks including correlated input variables,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 246-255, 2013.
[21]         E. Manitsas, R. Singh, B. C. Pal, and G. Strbac, “Distribution system state estimation using an artificial neural network approach for pseudo measurement modeling,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1888-1896, 2012.
[22]         Y. R. Gahrooei, A. Khodabakhshian, and R.-A. Hooshmand, “A New Pseudo Load Profile Determination Approach in Low Voltage Distribution Networks,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 463-472, 2018.
[23]         M. Amini and M. Almassalkhi, “Trading off robustness and performance in receding horizon control with uncertain energy resources,” in 2018 Power Systems Computation Conference (PSCC), 2018, pp. 1-7: IEEE.
[24]         J. Zhao, G. Zhang, Z. Y. Dong, and M. La Scala, “Robust forecasting aided power system state estimation considering state correlations,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2658-2666, 2018.
[25]         J.-W. Kang and D.-H. Choi, “Distributed multi-area WLS state estimation integrating measurements weight update,” IET Generation, Transmission & Distribution, vol. 11, no. 10, pp. 2552-2561, 2017.
[26]         K. Dehghanpour, Z. Wang, J. Wang, Y. Yuan, and F. Bu, “A survey on state estimation techniques and challenges in smart distribution systems,” IEEE Transactions on Smart Grid, 2018.
[27]         A. Abur and A. G. Exposito, Power system state estimation: theory and implementation. CRC press, 2004.
[28]         A. R. Abbasi and A. R. Seifi, “A new coordinated approach to state estimation in integrated power systems,” International Journal of Electrical Power & Energy Systems, vol. 45, no. 1, pp. 152-158, 2013.
[29]         K.-R. Shih and S.-J. Huang, “Application of a robust algorithm for dynamic state estimation of a power system,” IEEE Transactions on Power Systems, vol. 17, no. 1, pp. 141-147, 2002.
[30]         H. Wang, W. Zhang, and Y. Liu, “A Robust Measurement Placement Method for Active Distribution System State Estimation Considering Network Reconfiguration,” IEEE Transactions on Smart Grid, 2016.
[31]         R. Singh, B. Pal, and R. Jabr, “Choice of estimator for distribution system state estimation,” IET generation, transmission & distribution, vol. 3, no. 7, pp. 666-678, 2009.
[32]         R. Singh, B. C. Pal, and R. B. Vinter, “Measurement placement in distribution system state estimation,” IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 668-675, 2009.
[33]         M. Pau, F. Ponci, A. Monti, S. Sulis, C. Muscas, and P. A. Pegoraro, “An efficient and accurate solution for distribution system state estimation with multiarea architecture,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 5, pp. 910-919, 2017.
[34]         A. P. Grilo, P. Gao, W. Xu, and M. C. de Almeida, “Load monitoring using distributed voltage sensors and current estimation algorithms,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1920-1928, 2014.
[35]         H. Sirisena and E. Brown, “Representation of non-Gaussian probability distributions in stochastic load-flow studies by the method of Gaussian sum approximations,” in IEE Proceedings C (Generation, Transmission and Distribution), 1983, vol. 130, no. 4, pp. 165-171: IET.
[36]         D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers. John Wiley & Sons, 2010.
[37]         S. R. Gampa and D. Das, “Optimum placement and sizing of DGs considering average hourly variations of load,” International Journal of Electrical Power & Energy Systems, vol. 66, pp. 25-40, 2015.
[38]         Y. Xiang, P. F. Ribeiro, and J. F. Cobben, “Optimization of state-estimator-based operation framework including measurement placement for medium voltage distribution grid,” IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2929-2937, 2014.
[39]         A. E. Feijoo and J. Cidras, “Modeling of wind farms in the load flow analysis,” IEEE transactions on power systems, vol. 15, no. 1, pp. 110-115, 2000.