[1] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in fractional calculus, Springer Publishing, 2007.
[2] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
[3] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
[4] B. M. Vinagre and Y. Q. Chen, “Lecture notes on fractional calculus applications in automatic control and robotics,” The 41st IEEE CDC2002 Tutorial Workshop #2, pages 1-310, Nevada, USA, 2002.
[5] D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional dynamics and control, Springer, New York, 2011.
[6] N. Engheta, “On fractional calculus and fractional multipoles in electromagnetism” IEEE Transactions on Antennas and Propagation, vol. 44, no. 4, pp. 554-566, 1996.
[7] X. Yin, D. Yue and S. Hu, “Consensus of fractional Order heterogeneous multi-agent systems”, IET Control Theory and Applications, vol.7, no. 2, pp. 314-322, 2013.
[8] A. Boulkroune, A. Bouzerbia and T. Bouden, “Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control,” Neural Computing and Applications, vol. 27, no. 5, pp. 1349-1360, 2016.
[9] N. Laskin, “Fractional market dynamics,” Physica A: Statistical Mechanics and its Applications, vol. 287, no. 3-4, pp. 482-492, 2000.
[10] N. Ibrahima, M. Darouach, H. Voos and Z. Michel, “Design of unknown input fractional-order observers for fractional-order systems,” International Journal of Applied Mathematics and Computer Science, vol. 23, no. 3, pp. 491-500, 2013.
[11] Y. H. Lan, L. L. Wang, L. Ding and Y. Zhou, “Full-order and reduced-order observer design for a class of fractional-order nonlinear systems,” Asian Journal of Control, vol. 18, no. 4, pp. 1467-1477, 2016.
[12] S. Dadras, S. Dadras and H. R. Momeni, “Linear Matrix Inequality Based Fractional Integral Sliding-Mode Control of Uncertain Fractional-Order Nonlinear Systems,” Journal of Dynamics, Measurement, and Control, vol. 139, no. 11, pp. 111003–111003-7, 2017.
[13] الهه اسدی و سعید بلوچیان، «کنترل مقاوم-تطبیقی مدل مرتبه کسری موتور سری جریان مستقیم»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 827-817، 1396.
[14] Y. Q. Chen, I. Petras and D. Xue, “Fractional order control – A tutorial,” American Control Conference, St. Louis, MO, USA, 2009, pp. 1397-1411.
[15] C. A. Monje, Y. Q. Chen, B. Vinagre, D. Xue and V. Fileu, Fractional order controls – Fundamentals and applications, Springer, London, 2009.
[16] بهروز صفرینژادیان و مجتبی اسد، «ارائه دو فیلتر کالمن مرتبه کسری جدید برای سیستمهای مرتبه کسری خطی در حضور نویز اندازهگیری خطی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 607-595، تابستان 1396.
[17] I. Hwang, S. Kim, Y. Kim and C. E. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE Transactions on Control Systems Technology, vol. 18, no. 3, pp. 636-653, 2010.
[18] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems”, Annual Reviews in Control, vol. 32, no. 2, pp. 229-252, 2008.
[19] S. X. Ding, Model-based fault diagnosis techniques: design schemes, algorithms and tools, Second Edition, Springer, 2013.
[20] R. Isermann, Fault diagnosis systems, Springer, 2006.
[21] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and fault-tolerant control, Springer 2006.
[22] H. Noura, D. Theilliol, C. J. Ponsart and A. Chamseddine, Fault tolerant control systems, Design and Practical Applications, Springer, 2009.
[23] H. Wang, T. Chai, J. Ding and B. Martin, “Data driven fault diagnosis and fault tolerant control: Some advances and possible new directions,” Acta Automatica Sinica, vol. 35, no. 6, pp. 739-747, 2009.
[24] Z. Gao, C. Cecati and S. X. Ding, “A survey of fault diagnosis and fault-tolerant techniques-Part I: fault diagnosis with model-based and signal-based approaches,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757-3767, 2015.
[25] C. Cecati, A survey of fault diagnosis and fault-tolerant techniques-Part II: fault diagnosis with knowledge-based and hybrid/active approaches, IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3768-3774, 2015.
[26] I. N’Doye and T. M. L. Kirati, “Fractional order adaptive fault estimation for a class of nonlinear fractional order system,” American Control Conference, Chicago, IL, USA, 2015, pp. 3804-3809.
[27] H. Shen, X. Song and Z. Wang, “Robust fault-tolerant control of uncertain fractional-order systems against actuator faults,” IET Control Theory and Applications, vol. 7, no. 9, pp. 1233-1241, 2013.
[28] X. Song and H. Shen, “Fault tolerant control for interval fractional-order systems with sensor failures,” Advances in Mathematical Physics, DOI: 10.1155/2013/836743.
[29] E. A. Boroujeni and H. R. Momeni, “Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems,” Signal Processing, vol. 92, no. 10, pp. 2365-2370, 2012.
[30] E A. Boroujeni and H. R. Momeni, “An iterative method to design optimal non-fragile observer for lipschitz nonlinear fractional order systems,” Nonlinear Dynamics, vol. 80, no. 4, pp. 1801-1810, 2015.
[31] A. Jmal, O. Naifar, A. B. Makhlouf, N. Derbel and M. A. Hammami, “Robust sensor fault estimation for fractional-order systems with monotone nonlinearities,” Nonlinear Dynamics, vol. 90, no. 4, pp. 2673-2685, 2017.
[32] Y. Farid, V. J. Majd and A. Ehsani-seresht, “Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation,” Mechanical Systems and Signal Processing, vol. 104, no. 5, pp. 465-486, 2018.
[33] A. Jmal, O. Naifar, A. B. Makhlouf, N. Derbel and M. A. Hammami, “Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems,” Nonlinear Dynamics, vol. 91, no. 3, pp. 1713-1722, 2018.
[34] A. Jmal, O. Naifar, A. B. Makhlouf and N. Derbel, “Fault tolerant control for linear fractional order systems with sensor faults,” 15th International Multi-Conference on Systems, Signals & Devices, Hammamet, Tunisia, 2018, pp. 105-110.
[35] H. K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, 2002.
[36] Y. Li, Y. Q. Chen and I. Podlubny, “Mittag–Leffler stability of fractional order nonlinear dynamic systems,” Automatica, vol. 45, no. 8, pp. 1965-1969, 2009.
[37] A. D. M. Manuel, A. C. Norelys and A. G. Javier, “Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems,” Communications in Nonlinear Science and Numerical Simulations, vol. 22, no. 1-3, pp. 650-659, 2015.
[38] S. Boyd, L. Ghaoui and E. Feron, Linear matrix inequalities in system and control theory, SIAM, 1994.
[39] A. A. Ahmadi and V. J. Majd, “GCS of a class of chaotic systems with controller gain variations,” Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1238-1245, 2009.
[40] Z. Gao, T. Breikin and H. Wang, “Reliable observer-based control against sensor failures for systems with time delays in both state and input,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 38, no. 5, pp. 1018-1029, 2008.
[41] M. Abbaszadeh and H. J. Marquez, “Design of Nonlinear State Observers for One-Sided Lipschitz Systems,” arXiv preprint arXiv: 1302.5867, 2013.
[42] J. Lofberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” in Proceeding of the International Symposium on Computer Aided Control Systems Design, pp. 284-289, Taipei, Taiwan, 2004.