هدایت پرنده کوادکوپتر برمبنای سیگنال الکترواکولوگرافی

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی برق، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

الکترواکولوگرام یک سیگنال حیاتی است که می‌تواند نقش مهمی در سیستم‌های رابط انسان-کامپیوتر ایفا کند. سیگنال‌های الکترواکولوگرافی که حاصل حرکت چشم انسان هستند، مزیت ثبت آسان به‌علت دامنه بیشتر و نسبت سیگنال به نویز بالاتر را نسبت به دیگر مدالیته‌ها (مانند الکتروانسفالوگرافی) دارند. پردازش درلحظه، طبقه‌بندی و استخراج ویژگی از عوامل مهم دیگر سیستم‌های کاربردی رابط مغز-کامپیوتر به‌شمار می‌روند. در پژوهش حاضر یک سیستم درلحظه و مقرون به‌صرفه رابط انسان-کامپیوتر مبتنی‌بر سیگنال‌های الکترواکولوگرافی طراحی و توسعه داده شده است. این سیستم شامل یک عینک ارتقاء یافته برای جاگذاری و ثابت‌سازی الکترودهای سطحی روی صورت کاربر و یک شتاب‌سنج برای تشخیص حرکات سر و بدن کاربر است. سیگنال‌های الکترواکولوگرافی به‌وسیله حرکت چشم کاربر در چهار جهت اصلی (بالا، پایین، چپ و راست) نسبت به چهار لبه نمایشگر روبه‌روی وی به‌دست می‌آیند. سپس با انتخاب فیلترها و مدل پردازشی مناسب، سیگنال‌ها با تأخیر بسیار اندک طبقه‌بندی شده و با استخراج ویژگی‌ها، نسبت به حذف آرتیفکت‌های موجود اقدام می‌گردد. در انتها سیستم با دقت %94.4 در تشخیص صحیح حرکت چشم کاربر (در آزمایش روی 5 کاربر، هرآزمایش 5 نوبت تست عملکرد) موفق به کنترل کامل یک پرنده کوادکوپتر گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Quadcopter Navigation based on the Electrooculography Signal

نویسندگان [English]

  • S. Milanizadeh
  • J. Safaie
Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Electrooculogram is a bio-potential signal that can play an important role in Brain Computer Interface systems. EOG, which is the result of moving human eye bulb, has the advantage of relatively easy recording due to its higher amplitude and signal-to-noise ratio compared to other modalities (e.g. EEG). Real-time processing, classification, and feature extraction are another important factors in applicable BCI systems. In the present study, a real-time processing and cost effective BCI system have been designed and developed based on EOG signals. It contains an updated eyeglass for fixing EOG electrodes on the subject’s face and a 3D accelerometer for detecting subject’s movement. EOG signals were acquired by subject’s eye movement toward the four middle part of screen edges, which was placed in front of him/her. Expected results of the system was real-time generating of four different digital commands (Quadcopter navigation) based on the eye movement of a subject in four different directions (up, down, left and right). At the end system have been tested on five different Subjects (five trials for each subject), and 94.4% of system accuracy in detecting eye movements have been achieved. 

کلیدواژه‌ها [English]

  • Electrooculography
  • human-machine interface system
  • signal classification & feature extraction
[1]     A. B. Usakli and S. Gurkan, "Design of a novel efficient human–computer interface: an electrooculagram based virtual keyboard," IEEE Transactions on Instrumentation and Measurement, vol. 59, pp. 2099-2108, 2010.
[2]     L. J. Trejo, R. Rosipal, and B. Matthews, "Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials," IEEE transactions on neural systems and rehabilitation engineering, vol. 14, pp. 225-229, 2006.
[3]     Z. Lv, X. Wu, M. Li and C. Zhang, "Implementation of the EOG-based human computer interface system," in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on,  pp. 2188-2191, 2008.
[4]     M. Merino, O. Rivera, I. Gómez, A. Molina and E. Dorronzoro, "A method of EOG signal processing to detect the direction of eye movements," in Sensor Device Technologies and Applications (SENSORDEVICES), 2010 First International Conference on, pp. 100-105, 2010.
[5]   مرتضی جهان‌تیغ، مصطفی چرمی، «افزایش صحت طبقه‌بندی سیگنال‌های EEG تصور حرکتی با ترکیب منطقی طبقه‌بندها و با به‌کارگیری الگوریتم ژنتیک و درختان تصمیم کوچک»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 3 - شماره پیاپی 81، صفحه 931-938، پاییز 1396.
[6]     U. Kellner, C. Jandeck, H. Kraus and M. H. Foerster, "Autosomal dominant vitreoretinochoroidopathy with normal electrooculogram in a German family," Graefe's archive for clinical and experimental ophthalmology, vol. 236, pp. 109-114, 1998.
[7]     C.-C. Postelnicu, F. Girbacia and D. Talaba, "EOG-based visual navigation interface development," Expert Systems with Applications, vol. 39, pp. 10857-10866, 2012.
[8]     H. S. Dhillon, R. Singla, N. S. Rekhi and R. Jha, "EOG and EMG based virtual keyboard: A brain-computer interface," in Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on, pp. 259-262, 2009.
[9]     B. Champaty, J. Jose, K. Pal and A. Thirugnanam, "Development of EOG based human machine interface control system for motorized wheelchair," in Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), 2014 Annual International Conference on, pp. 1-7, 2014.
[10]   L. Y. Deng, C.-L. Hsu, T.-C. Lin, J.-S. Tuan and S.-M. Chang, "EOG-based Human–Computer Interface system development," Expert Systems with Applications, vol. 37, pp. 3337-3343, 2010.
[11]   J. Ma, Y. Zhang, A. Cichocki and F. Matsuno, "A novel EOG/EEG hybrid human–machine interface adopting eye movements and ERPs: Application to robot control," IEEE Transactions on Biomedical Engineering, vol. 62, pp. 876-889, 2015.
[12]   M. Fatourechi, A. Bashashati, R. K. Ward and G. E. Birch, "EMG and EOG artifacts in brain computer interface systems: A survey," Clinical neurophysiology, vol. 118, pp. 480-494, 2007.
[13]   H. Manabe, M. Fukumoto and T. Yagi, "Direct gaze estimation based on nonlinearity of EOG," IEEE Transactions on Biomedical Engineering, vol. 62, pp. 1553-1562, 2015.
[14]   R. Barea, L. Boquete, M. Mazo and E. López, "System for assisted mobility using eye movements based on electrooculography," IEEE transactions on neural systems and rehabilitation engineering, vol. 10, pp. 209-218, 2002.
[15]   Q. Huang, S. He, Q. Wang, Z. Gu, N. Peng, K. Li et al., "An EOG-based human-machine interface for wheelchair control," IEEE Transactions on Biomedical Engineering, Vol. 65 , pp. 2023-2032, 2017.
[16]   E. Hortal, E. Iáñez, A. Úbeda, C. Perez-Vidal and J. M. Azorín, "Combining a Brain–Machine Interface and an Electrooculography Interface to perform pick and place tasks with a robotic arm," Robotics and Autonomous Systems, vol. 72, pp. 181-188, 2015.
[17]   D. Borghetti, A. Bruni, M. Fabbrini, L. Murri and F. Sartucci, "A low-cost interface for control of computer functions by means of eye movements," Computers in Biology and Medicine, vol. 37, pp. 1765-1770, 2007.
[18]   B. H. Kim, M. Kim and S. Jo, "Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking," Computers in biology and medicine, vol. 51, pp. 82-92, 2014.
[19]   A. C. Lopes, G. Pires, L. Vaz and U. Nunes, "Wheelchair navigation assisted by human-machine shared-control and a P300-based brain computer interface," in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011, pp. 2438-2444.
[20]   A. Bulling, J. A. Ward, H. Gellersen and G. Tröster, "Eye movement analysis for activity recognition," in Proceedings of the 11th international conference on Ubiquitous computing, 2009, pp. 41-50.
[21] محسن پاداش، مصطفی یارقلی، "بهبود دقت و پایداری مدار تولید شکل موج شیب با توان مصرفی پایین برای استفاده در مبدل‌های آنالوگ به دیجیتال تک‌شیب" مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 2 - شماره پیاپی 84، صفحه 531-539، تابستان 1397.
[22]   S. Bharadwaj and B. Kumari, "Electrooculography: Analysis on device control by signal processing," International Journal of Advanced Research in Computer Science, vol. 8, pp. 787-790, 2017.