[1] A. Pandey, Y. Gurbuz, “Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E.coli O157:H7,” Bios Journal, vol. 91, pp. 225-231, 2017
[2] MB. Maas1, WJ. Perold, LMT. Dicks, “Biosensors for the detection of Escherichia coli, ” water SA Journal, vol. 43, pp. 707-721, 2017
[3] H. M. So, D. W. Park, E. K. Jeon” Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect Transistors,” Wiley, Small, vol. 4, no. 2, pp. 197-201, 2008
[4] M. Kaisti “Detection principles of biological and chemical FET sensors,” Elsevier, Biosensors and Bioelectronics, vol. 98, pp. 437-448, 2017
[5] مهسا مهراد و میثم زارعی، « ارائه ساختار نوین ترانزیستور اثر میدان سیلیسیم روی عایق دو گیتی با پنجره اکسید درین گسترده شده بهمنظور کاربرد در تکنولوژی نانو،» مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 733-727، 1396.
[6] حامد نجفعلی زاده و علی اصغر اروجی، « طراحی ساختاری از ترانزیستور ماسفت دوگیتی با بهکارگیری دو ماده، اکسید هافنیم (HfO2) و سیلیسیم-ژرمانیوم (SiGe) در کانالی از جنس سیلیسیم (DM-DG)،» مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 304-299، 1396.
[7] G. Wu, M. Meyyappan, and K.W.C.L. Wu, "Simulation of Graphene Field-Effect Transistor Biosensors for Bacterial Detection," Sensors, vol. 18, no. 6, pp. 1-14, 2018.
[8] B. Thakur, G. Zhou, J. Chang, H. Pu, B. Jin, X. Sui, X. Yuan, C.H. Yang, M. Magruder, and J. Chen, "Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device," Biosensors and Bioelectronics, vol. 110, pp. 16-22, 2018.
[9] C. Singh, M.A. Ali, V. Reddy,D. Singh,C.G. Kim,G. Sumana, and B.D. Malhotra, "Biofunctionalized graphene oxide wrapped carbon nanotubes enabled microfluidic immunochip for bacterial cells detection," Sensors and Actuators B: Chemical, vol. 255, no. 3, pp. 2495-2503, 2018.
[10] Y. Jiang, X. Liu, T. C. Dang, X. Huang, H. Feng, Q. Zhang, and H. Yu, "A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening," IEEE transactions on biomedical circuits and systems, vol. 12, no. 2, pp. 402-415, 2018.
[11] P. Lin, F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Wiley, Adv Mater, vol. 24, no. 1, pp. 34-51, 2012
[12] O. Marinov, M. J. Deen, et al, “Organic thin-film transistors: part I—compact DC modeling” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 2952 – 2961, 2009
[13] S. Lai, M. Demelas, et al, “Ultralow voltage, OTFT-based sensor for label-free DNA detection,” Wiley, Adv Mater, vol. 25, no. 1, pp. 103-107, 2013
[14] M. Barbaro, A. Caboni, et al “Label-free, direct DNA detection by means of a standard CMOS electronic chip,” Elsevier, snb, vol. 171-172, pp.148-154, 2011
[15] M. Demelas, S. Lai, et al “An organic charge-modulated field effect transistor for DNA detection,” Elsevier, Sensors and Actuators B, vol. 171-172, pp. 198-203, 2012
[16] S. Lai, M. Barbaro and A. Bonfiglio, “Tailoring the sensing performances of an OFET-based biosensor,” Elsevier, snb, vol. 233, pp. 314-319, 2016
[17] S. Lai, M. Barbaro, and A. Bonfiglio, “Organic fet-based DNA hybridization sensor with sub-picomolar sensitivity,” IEEE, EMBC Annual International Conference, pp. 7958-7961, 2015
[18] Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, and M. I. Nathan, “Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene,” Applied Physics Letters, vol 79, no 17, pp. 2731-2722, 2001
[19] U. Haas, H. Gold, A. Haase, G. Jakopic, and B. Stadlobera, “Submicron pentacene-based organic thin film transistors on flexible substrates,” Applied Physics Letters, vol 91, no 4, 2007
[20] D. J. Yun, S. H. Lim, T. W. Lee and S. W. Rhee,” Fabrication of the flexible pentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate,” Organic Electronics, vol 10, no 5, pp 970-977, 2009
[21] S. R. Saudari, Y. J. Lin, Y. Lai and C. R. Kagan, ” Device configurations for ambipolar transport in flexible pentacene transistors,” Adv Mater, vol. 22, no.44, pp. 5063–5068, 2010
[22] A. Facchetti, “Semiconductors for organic transistors,” materials today, vol. 10, no.3, pp. 28-37, 2007
[23] S. R. Saudari and C. R. Kagan, “Electron and hole transport in ambipolar, thin film pentacene transistors,” Journal of Applied Physics, vol. 177, no. 3, 2015
[24] J. Atencia, D. J. Beebe, “Controlled microfluidic interfaces,” NATURE, vol.437, pp. 648-655, 2005
[25] D. A. Lytle, W. R. Eugene, et al, “Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains,” AEM, vol. 65, no.7, pp. 3222-3225, 1999
[26] H. Liu, Nanocomposites For Musculoskeletal Tissue Regeneration, Woodhead Publishing, 2016
[27] J. Li, L. I. McLandsborough, “The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle," International journal of food microbiology, vol. 53, no. 2-3, pp. 185-193, 1999
[28] Ron Milo, Rob Phillips, Cell Biology By The Numbers, Garland Science, 2015.
[29] P. Geng, X. Zhang, Y. Teng, Y. Fu, L. Xu, M. Xu, et al., "A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli," Biosensors and Bioelectronics, vol. 26, pp. 3325-3330, 2011.
[30] P. Cheng, Z-Gen Huang, Y. Zhuang, and et,al, "A novel regeneration-free E. coli O157:H7 amperometric immunosensor based on functionalised four-layer magneticnanoparticles", Sensors and Actuators B 204 pp. 561–567, 2014.
[31] R. Maalouf, C. Foumier-Wirth, J. Coste, H. Chebib, Y. Saikali, O. Vittori, A. Errachid, J.-P. Cloarec, C. Martelet, N. Jaffrezic-Renault, "Labelfree detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance", Anal. Chem. 79 (2007) 4879-4886.
[32] M. Varshney, Y. Li, "Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples", Biosens. Bioelectron. 22 pp. 2408-2414, 2007.