طراحی و استخراج مدل مداری یک فیلتر پهن باند بر پایه سطح انتخاب‌گر فرکانس برای کاربردهای تراهرتز

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق و الکترونیک - دانشگاه صنعتی شیراز

چکیده

در این مقاله، یک فیلتر میان‌گذر بر پایه سطح انتخاب‌گر فرکانس در محدوده فرکانسی تراهرتز طراحی شده‌است. فیلتر طراحی‌شده دارای عمل‌کرد چشم‌گیری در نواحی باند عبور و خارج از باند است. این ساختار دارای پهنای باند نسبی %60 با فرکانس مرکزی 4/0 تراهرتز است و به‌علاوه، دامنه موج عبوری بالایی با حدکثر صافی فوق‌العاده‌ای در مقایسه با کارهای پیشین به‌دست آمده‌است. همچنین، مدار معادل این ساختار استخراج شده‌است. مقایسه انجام‌شده بین مدل مداری و شبیه‌سازی تمام موج، بیانگر تطابق خوب نتایج به‌دست آمده است. به‌علاوه، حساسیت این فیلتر نسبت به زوایای مختلف در محدوده 0 تا 60 درجه مورد بررسی قرار گرفته‌است که بیان‌گر حساسیت کم این فیلتر نسبت به زوایای تابش متفاوت است. هم‌چنین، تأثیر ناشی از تغییر پارامترهای فیزیکی فیلتر موردنظر مورد تحلیل قرار گرفته‌است و نتایج حاصله، براساس المان‌های مداری توجیه شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Equivalent Circuit Model Extraction of a Frequency Selective Surface-Based Broadband Filter for Terahertz Applications

نویسندگان [English]

  • H. Mohammadi Nemat Abad
  • E. Zareian-Jahromi
  • R. Basiri
Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

In this paper, a frequency selective surface-based band pass filter is proposed in terahertz regime. The proposed filter provides a great performance in pass band and out-of-band regions. A fractional bandwidth of 60% around the central frequency of 0.4 THz is achieved whereas a high transmission magnitude with an acceptable flatness is obtained in comparison to previous reports. Additionally, an equivalent circuit model is extracted for the proposed filter. A comparison between simulation results and those obtained using proposed circuit model shows a good agreement. Moreover, the sensitivity of the proposed filter with respect to the incident wave angle is investigated in the range of 0 to 60̊. It is demonstrated that the performance of the designed filter is acceptable for various incident angles in the mentioned range. Also, the effects of altering different geometrical parameters are investigated and justified based on the equivalent circuit model.

کلیدواژه‌ها [English]

  • Metamaterial filter
  • frequency selective surfaces
  • terahertz filter
  • equivalent circuit model
  • sensitivity
[1]      J. C. Wiltse, “History of millimeter and submillimeter waves,” IEEE Transactions on microwave theory and techniques, vol. 32, no. 9, pp. 1118–1127, 1984.
[2]      D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Progress in Quantum Electronics, vol. 28, no. 1, pp. 1–66, 2004.
[3]      K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Optics express, vol. 11, no. 20, pp. 2549–2554, 2003.
[4]      D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Applied Physics B, vol. 68, no. 6, pp. 1085–1094, 1999.
[5]      سجاد راستی، سامیه مطلوب، علی رستمی، مدل‌سازی و امکان‌سنجی شناسایی ریزگردهای آلاینده هوا مبتنی بر طیف‌سنجی تراهرتز در حوزه زمان، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 4، صفحات 1421-1430، 1396
[6]      Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Applied Physics Letters, vol. 86, no. 24, p. 241116, 2005.
[7]      T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011.
[8]      J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, vol. 107, no. 11, p. 6, 2010.
[9]      M. Dragoman, A. A. Muller, D. Dragoman, F. Coccetti, Plana, and R, “Terahertz antenna based on graphene,” Journal of Applied Physics, vol. 107, no. 10, p. 104313, 2010.
[10]      M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable terahertz plasmonic antenna concept using a graphene stack,” Applied Physics Letters, vol. 101, no. 21, p. 214102, 2012.
[11]      H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics express, vol. 16, no. 10, pp. 7181–7188, 2008.
[12]      Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale, vol. 7, no. 29, pp. 12682–12688, 2015.
[13]      F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, E. Kato., “Terahertz surface-wave resonant sensor with a metal hole array,” Optics letters, vol. 31, no. 8, pp. 1118–1120, 2006.
[14]      R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Applied physics letters, vol. 97, no. 13, p. 131106, 2010.
[15]      D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Transactions on Nanotechnology, vol. 13, no. 6, pp. 1145–1153, 2014.
[16]      C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Applied Physics Letters, vol. 88, no. 10, p. 101107, 2006.
[17]      M. Lu, W. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Optics letters, vol. 36, no. 7, pp. 1071–1073, 2011.
[18]      C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, 2005.
[19]      M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials, vol. 2, no. 4, pp. 186–197, 2008.
[20]      B. A. Munk, Frequency selective surfaces: theory and design. John Wiley & Sons, 2005.
[21]      E. Zareian-Jahromi and J. Khalilpour, “Analysis of a freestanding frequency selective surface loaded with a nonlinear element,” Journal of Electromagnetic Waves and Appl., vol. 25, pp. 247–255, 2011.
[22]      H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Applied physics letters, vol. 97, no. 16, p. 163102, 2010.
[23]      X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Optics express, vol. 19, no. 6, pp. 5283–5289, 2011.
[24]      J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Design of narrow band-pass frequency selective surfaces for millimeter wave applications,” Progress In Electromagnetics Research, vol. 96, pp. 287–298, 2009.
[25]      F. Lan, Z. Yang, L. Qi, X. Gao, and Z. Shi, “Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures,” Optics letters, vol. 39, no. 7, pp. 1709–1712, 2014.
[26]      N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Optics express, vol. 19, no. 8, pp. 6990–6998, 2011.
[27]      M. A. Al-Joumayly and N. Behdad, “A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 4033–4041, 2010.
[28]      K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1239–1245, 2007.
[29]      فرهاد خسروی افوسی، محمدنقی آذرمنش، جواد نوری‌نیا، به کارگیری ساختارهای EBG به منظور افزایش پهنای باند و دایرکتیویتی آنتن میکرواستریپ، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 2، صفحات 1-8، 1392
[30]       M. Salehi and N. Behdad, “A second-order dual X-/Ka-band frequency selective surface,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 785–787, 2008.
[31]      X.-D. Hu, X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, “A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1374–1377, 2009.
[32]      J.-S. Li, Y. Li, and L. Zhang, “Terahertz Bandpass Filter Based on Frequency Selective Surface,” IEEE Photonics Technology Letters, vol. 30, no. 3, pp. 238–241, 2018.
[33]      K. Humphreys, J. P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A Murphy, and C. O'sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” 26th Annual International Conference of the IEEE, vol. 1, pp. 1302–1305, 2004.
[34]      C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Applied Physics A: Materials Science & Processing, vol. 66, no. 6, pp. 593–598, 1998.
[35]      K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz spectroscopy and imaging, vol. 171. Springer, 2012.
[36]      A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. Al-Sarawi, D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp. 761–769, 2015.
[37]      C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999.
[38]      D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009.
[39]      A. I. Zverev, Handbook of filter synthesis. Wiley, 1967.
[40]      R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
[41]      Y.-J. Chiang, C.-S. Yang, Y.-H. Yang, C.-L. Pan, and T.-J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Applied Physics Letters, vol. 99, no. 19, p. 191909, 2011.