[1] J. C. Wiltse, “History of millimeter and submillimeter waves,” IEEE Transactions on microwave theory and techniques, vol. 32, no. 9, pp. 1118–1127, 1984.
[2] D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Progress in Quantum Electronics, vol. 28, no. 1, pp. 1–66, 2004.
[3] K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Optics express, vol. 11, no. 20, pp. 2549–2554, 2003.
[4] D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Applied Physics B, vol. 68, no. 6, pp. 1085–1094, 1999.
[5] سجاد راستی، سامیه مطلوب، علی رستمی، مدلسازی و امکانسنجی شناسایی ریزگردهای آلاینده هوا مبتنی بر طیفسنجی تراهرتز در حوزه زمان، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 4، صفحات 1421-1430، 1396
[6] Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Applied Physics Letters, vol. 86, no. 24, p. 241116, 2005.
[7] T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011.
[8] J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, vol. 107, no. 11, p. 6, 2010.
[9] M. Dragoman, A. A. Muller, D. Dragoman, F. Coccetti, Plana, and R, “Terahertz antenna based on graphene,” Journal of Applied Physics, vol. 107, no. 10, p. 104313, 2010.
[10] M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable terahertz plasmonic antenna concept using a graphene stack,” Applied Physics Letters, vol. 101, no. 21, p. 214102, 2012.
[11] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics express, vol. 16, no. 10, pp. 7181–7188, 2008.
[12] Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale, vol. 7, no. 29, pp. 12682–12688, 2015.
[13] F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, E. Kato., “Terahertz surface-wave resonant sensor with a metal hole array,” Optics letters, vol. 31, no. 8, pp. 1118–1120, 2006.
[14] R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Applied physics letters, vol. 97, no. 13, p. 131106, 2010.
[15] D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Transactions on Nanotechnology, vol. 13, no. 6, pp. 1145–1153, 2014.
[16] C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Applied Physics Letters, vol. 88, no. 10, p. 101107, 2006.
[17] M. Lu, W. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Optics letters, vol. 36, no. 7, pp. 1071–1073, 2011.
[18] C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, 2005.
[19] M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials, vol. 2, no. 4, pp. 186–197, 2008.
[20] B. A. Munk, Frequency selective surfaces: theory and design. John Wiley & Sons, 2005.
[21] E. Zareian-Jahromi and J. Khalilpour, “Analysis of a freestanding frequency selective surface loaded with a nonlinear element,” Journal of Electromagnetic Waves and Appl., vol. 25, pp. 247–255, 2011.
[22] H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Applied physics letters, vol. 97, no. 16, p. 163102, 2010.
[23] X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Optics express, vol. 19, no. 6, pp. 5283–5289, 2011.
[24] J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Design of narrow band-pass frequency selective surfaces for millimeter wave applications,” Progress In Electromagnetics Research, vol. 96, pp. 287–298, 2009.
[25] F. Lan, Z. Yang, L. Qi, X. Gao, and Z. Shi, “Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures,” Optics letters, vol. 39, no. 7, pp. 1709–1712, 2014.
[26] N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Optics express, vol. 19, no. 8, pp. 6990–6998, 2011.
[27] M. A. Al-Joumayly and N. Behdad, “A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 4033–4041, 2010.
[28] K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1239–1245, 2007.
[29] فرهاد خسروی افوسی، محمدنقی آذرمنش، جواد نورینیا، به کارگیری ساختارهای EBG به منظور افزایش پهنای باند و دایرکتیویتی آنتن میکرواستریپ، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 2، صفحات 1-8، 1392
[30] M. Salehi and N. Behdad, “A second-order dual X-/Ka-band frequency selective surface,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 785–787, 2008.
[31] X.-D. Hu, X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, “A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1374–1377, 2009.
[32] J.-S. Li, Y. Li, and L. Zhang, “Terahertz Bandpass Filter Based on Frequency Selective Surface,” IEEE Photonics Technology Letters, vol. 30, no. 3, pp. 238–241, 2018.
[33] K. Humphreys, J. P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A Murphy, and C. O'sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” 26th Annual International Conference of the IEEE, vol. 1, pp. 1302–1305, 2004.
[34] C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Applied Physics A: Materials Science & Processing, vol. 66, no. 6, pp. 593–598, 1998.
[35] K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz spectroscopy and imaging, vol. 171. Springer, 2012.
[36] A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. Al-Sarawi, D. Abbott, “Second-order terahertz bandpass frequency selective surface with miniaturized elements,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp. 761–769, 2015.
[37] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999.
[38] D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009.
[39] A. I. Zverev, Handbook of filter synthesis. Wiley, 1967.
[40] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
[41] Y.-J. Chiang, C.-S. Yang, Y.-H. Yang, C.-L. Pan, and T.-J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Applied Physics Letters, vol. 99, no. 19, p. 191909, 2011.