طراحی تمام جمع‌کننده آزمون‌پذیر بر اساس آتوماتای سلولی کوانتومی در مقیاس نانو

شناسنامه علمی شماره

نویسندگان

گروه مهندسی کامپیوتر - واحد تبریز - دانشگاه آزاد اسلامی

چکیده

آتوماتای سلولی کوانتومی امروزه یکی از فناوری‌های مهم، دارای چگالی بالا، سرعت ‌بالا و انرژی مصرفی کم در طراحی مدارات در مقیاس نانو است. ارائه روشی برای آزمون توکار مدارات پیاده‌شده بر اساس آتوماتای سلولی کوانتومی که باعث افزایش قابلیت کنترل و افزایش مشاهده و آزمون‌پذیری مدارات گردد، بسیار حائز اهمیت است. مدار تمام جمع‌کننده به‌عنوان یکی از مدارات مهم و اساسی در سیستم­های دیجیتال و آتوماتای سلولی کوانتومی سلولی است. لذا، پیاده‌سازی مدار تمام جمع‌کننده با ساختار آزمون توکار و قابلیت­های مشاهده‌پذیری و کنترل‌پذیری اجزای میانی آن، موجب افزایش قابلیت اطمینان و افزایش آزمون‌پذیری سایر مدارات طراحی‌شده بر این اساس می‌گردد. در این راستا، در این مقاله یک ساختار جدید برای مدار تمام جمع‌کننده که دارای خاصیت مشاهده‌پذیری و آزمون‌پذیری با روش آزمون توکار است معرفی می­گردد. در این روش تمامی ورودی‌های مدار تمام جمع‌کننده دارای قابلیت آزمون‌پذیری و کنترل‌پذیری می‌باشند و جهت افزایش آزمون‌پذیری گره‌های میانی مشاهده‌پذیر گردیده‌اند. این مدار نسبت به مدارات قبلی ازلحاظ تعداد سلول دارای سلول کمتر، سرعت بهتر و فضای مصرفی کم است. همچنین، صحت عملکرد مدار پیشنهادی توسط شبیه‌ساز معتبر QCADesigner مورد بررسی قرار گرفته و تائید گردیده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Testable Full Adder Designing based on Quantum-Dot Cellular Automata on Nanoscale

نویسندگان [English]

  • S. Seyedi
  • N. Navimipour
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
چکیده [English]

Quantum dot cellular automata (QCA) as an important technology with minimal size, high speed, low latency and power consumption is suitable replacement for semiconductor transistor technology. The growing demand for observability and testability attracts more research on it. A full adder circuit is a basic unit in digital arithmetic and logic circuits. In this paper, a unique structure for testable full adder is presented in QCA. The implementation of the full adder circuit with the structure of the Built In-Self Test (BIST), its observational capabilities and its intermediate component controllability increase the reliability and the test capability of other designed circuits based on this. All of inputs in the proposed have testability and controllability capability and the middle nodes have observability feature. This design in contrast to its counterparts uses three-layer scheme and surpasses the best previous layer designs in terms of area, delay and complexity. The simulation results using QCADesigner software confirmed that the presented circuit works well and can be used as a high-performance design in QCA technology.

کلیدواژه‌ها [English]

  • Full adder
  • quantum-dot cellular automata (QCA)
  • testability
  • nanotechnology
  • built-in-self test
[1]      مهسا مهراد، میثم زارعی، "ارائه ساختار نوین ترانزیستور اثر میدان سیلیسیم روی عایق دو گیتی با پنجره اکسید در درین گسترده شده به‌منظور کاربرد در تکنولوژی نانو "مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 727-733، 1396.
[2]      پرویز امیری، محمود صیفوری، بابک آفرین، آوا هدایتی‌پور، "طراحی پیش تقویت‌کننده RGC کم نویز مدار مجتمع CMOS با پهنای باند GHz 20 و بهره dBΩ 60" مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 15-23، 1395.
[3]      محمدامین ثابت سروستانی، بهنام قوامی، محسن راجی، "کاهش نرخ خطای نرم چندگانه مدارهای ترکیبی مبتنی بر اندازه‌گذاری دروازه‌ها بر مبنای پارامتر حساسیت" مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 445-454، 1396.     
[4]      C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, "Quantum cellular automata," Nanotechnology, vol. 4, 1993.
[5]      G. Moore, "Moore’s law," Electronics Magazine, vol. 38, 1965.
[6]      G. Jaberipur and S. Gorgin, "Design and Synthesis of High Speed Low Power Signed Digit Adders," Journal of Iranian Association of Electrical and Electronics Engineers, vol. 7, pp. 7-14, 2010.
[7]      N. Hasanzade and M. Danaie, "A New Technique for Reduction of Leakage Current of CMOS Switches," Journal of Iranian Association of Electrical and Electronics Engineers, vol. 13, pp. 33-40, 2017.
[8]      A. F. Khavari, K. Mafinezhad and M. Maymandi Nejad, "A Broadband Low Power CMOS LNA for 3.1–10.6 GHz UWB Receivers," Journal of Iranian Association of Electrical and Electronics Engineers, vol. 14, pp. 1-13, 2018.
[9]      P. D. Tougaw and C. S. Lent, "Logical devices implemented using quantum cellular automata," Journal of Applied physics, vol. 75, pp. 1818-1825, 1994.
[10]      A. Vetteth, K. Walus, V. S. Dimitrov and G. A. Jullien, "Quantum-dot cellular automata of flip-flops," ATIPS Laboratory, vol. 2500, 2003.
[11]      M. R. Azghadi, O. Kavehie and K. Navi, "A novel design for quantum-dot cellular automata cells and full adders," arXiv preprint arXiv: 1204.2048 (2012).
[12]      Z. Baharvand and A. Hakimi, "Analysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts," AUT Journal of Electrical Engineering, vol. 45, pp. 35-50, 2013.
[13]      H. Rashidi and A. Rezai, "High-performance full adder architecture in quantum-dot cellular automata," The Journal of Engineering, vol. 1, pp. 10-21, 2017.
[14]      S. Mondal, D. Mukhopadhyay, and P. Dutta, "A Design of a 4 Dot 2 Electron QCA Full Adder Using Two Reversible Half Adders," in Proceedings of the First International Conference on Intelligent Computing and Communication, pp. 327-335, 2017.
[15]      M. R. Gadim and N. J. Navimipour, "A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata," Microsystem Technologies, pp. 1-11, 2017.
[16]      S. Afrooz and N. J. Navimipour, ''Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends," Journal of Circuits, Systems and Computers, pp. 12-26, 2017.
[17]      M. Poorhosseini, "Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata," Journal of Advances in Computer Engineering and Technology, vol. 2, pp. 17-26, 2016.
[18]      M. Goswami, B. Sen, R. Mukherjee and B. K. Sikdar, "Design of Testable Adder in Quantum‐dot Cellular Automata with Fault Secure Logic," Microelectronics Journal, vol. 60, pp. 1-12, 2017.
[19]      M. B. Tahoori, J. Huang, M. Momenzadeh and F. Lombardi, "Testing of quantum cellular automata," IEEE Transactions on Nanotechnology, vol. 3, pp. 432-442, 2004.
[20]      M. B. Tahoori, M. Momenzadeh, J. Huang and F. Lombardi, "Defects and faults in quantum cellular automata at nano scale," in VLSI Test Symposium, pp. 291-296, 2004.
[21]      R. Sherizadeh and N. J. Navimipour, "Designing a 2-to-4 decoder on Nano-scale based on quantum-dot cellular automata for energy dissipation improving," Optik-International Journal for Light and Electron Optics, 2017.
[22]      S. Seyedi and N. Jafari Navimipour, "An optimized design of a full adder based on nano scale quantum-dot cellular automata," Microelectronics Journal vol. 5, pp. 243-256, 2017.
[23]      S. Seyedi and N. Jafari Navimipour, "An optimized design of full adder based on Nanoscale quantum-dot cellular automata," Optik - International Journal for Light and Electron Optics, 2018.
[24]       E. T. Karkaj and S. R. Heikalabad, "A testable parity conservative gate in quantum-dot cellular automata," Superlattices and Microstructures, vol. 101, pp. 625-632, 2017.
[25]      B. Sen, A. Sengupta, M. Dalui and B. K. Sikdar, "Design of testable universal logic gate targeting minimum wire-crossings in QCA logic circuit," in Digital System Design: Architectures, Methods and Tools (DSD), 2010 13th Euromicro Conference on, pp. 613-620, 2010.
[26]      K. Das and D. De, "Novel approach to design a testable conservative logic gate for QCA implementation," in Advance Computing Conference (IACC), 2010 IEEE 2nd International, pp. 82-87, 2010.
[27]      M. Balali, A. Rezai, H. Balali, F. Rabiei and S.  Emadi, ''Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate,'' Results in physics, vol. 7, pp. 1389-1395, 2017.
[28]      D. Mokhtari, A. Rezai, H.  Rashidi, F.  Rabiei, S.  Emadi and A.  Karimi, ''Design of novel efficient full adder architecture for quantum-dot cellular automata technology,'' Facta Universitatis, Series: Electronics and Energetics, vol. 31 pp. 279-285, 2018.
[29]      M. N. Asfestani and S. R. Heikalabad, "A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures," Physica B: Condensed Matter, vol. 512, pp. 91-99 , 2017.
[30]      K. Walus and G. Schulhof, "QCADesigner homepage," Online] http://www. qcadesigner. ca, 2002.
[31]      S. Sarmadi, S. Sayedsalehi, M. Fartash and S. Angizi, "A structured ultra-dense QCA one-bit full-adder cell," Quantum Matter, vol. 5, pp.118 -123, 2016.
[32]      S. Sayedsalehi, M. H. Moaiyeri and K. Navi, "Novel efficient adder circuits for quantum-dot cellular automata," Journal of Computational and Theoretical Nanoscience, vol. 8, pp. 1769-1775, 2011.
[33]      S. Hashemi, M. Tehrani and K. Navi, "An efficient quantum-dot cellular automata full-adder," Scientific Research and Essays, vol. 7, pp. 177-189, 2012.
[34]      K. Navi, R. Farazkish, S. Sayedsalehi and M. R. Azghadi, "A new quantum-dot cellular automata full-adder," Microelectronics Journal, vol. 4, pp. 820-826, 2010.
[35]      K. Navi, S. Sayedsalehi, R. Farazkish and M. R. Azghadi, "Five-input majority gate, a new device for quantum-dot cellular automata," Journal of Computational and Theoretical Nanoscience, vol. 7, pp. 1546-1553, 2010.
[36]      S. Mohammadyan, S. Angizi and K. Navi, "New fully single layer QCA full-adder cell based on feedback model," International Journal of High Performance Systems Architecture, vol. 5, pp. 202-208, 2015.
[37]      W. Wang, K. Walus and G. A. Jullien, "Quantum-dot cellular automata adders," in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, pp. 461-464, 2003.