بهبود خواص الکتریکی و اپتیکی لایه نازکITO با اصلاح فاصله الکترودها در سامانه اسپاترینگ DC مگنترونی

شناسنامه علمی شماره

نویسندگان

دانشکده مهندسی - دانشگاه شهید چمران اهواز

چکیده

یکی از پارامترهای مهم در لایه­نشانی لایه­های نازک اکسید ایندیوم-قلع (ITO) به روش کندوپاش مگنترونی، فاصله الکترودها است که با تغییر آن شرایط پلاسمای رسوب تغییر می­کند. در این تحقیق لایه­های نازک ITO به روش کندوپاش مگنترونی DC، با تغییر فاصله الکترودها در گستره cm 5-11، بر بستر شیشه در دمای اتاق رسوب داده شده­است. تحت شرایط فوق ضخامت نمونه­ها در محدوده nm 110-370، متوسط اندازه دانه­های کریستالی برای نمونه لایه­نشانی­شده در فاصله مطلوب cm 7 برابر با  nm5±50  و جذر میانگین مربعات زبری سطح برابر با nm 97/1 به­دست آمده­است. همچنین مشاهده شد که لایه نازک ITO دارای ساختار مکعبی بیکس­بایت می­باشد. مقاومت ورقه­ای لایه­های نازک ITO در فواصل 5، 7، 9 و cm 11 به­ترتیب برابر با 7/17، 16، 1733 و □/Ω 5207 انداز­ه­گیری شده­اند. شفافیت لایه­های نازک رسوب­داده­شده در بازه nm400-800، در محدوده 85-75% متغیر است. بر­اساس نتایج برای فاصله الکترودهای cm 7، مقاومت ورقه­ای ITO تا □/Ω 16 کاهش می­یابد و در­عین­حال برای ضخامت nm 230، شفافیت آن 85% است که برای استفاده به­عنوان کنتاکت در سلول خورشیدی سیلیکن آمورف بسیار مناسب است. علاوه­بر نتایج عملی، آنالیز داده­ها به­کمک نرم­افزارهای MATLAB و X'Pert و شبیه­سازی پلاسما به­کمک نرم­افزار شبیه­ساز پلاسما xpdp1 انجام شده­است.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of electrical and optical properties of thin ITO films by modifying electrode spacing in DC magnetron sputtering.

نویسندگان [English]

  • A. Kosarian
  • A. Keramatzadeh
  • M. Shakiba
  • H. Kaabi
  • E. Farshidi
Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

An important parameter in the deposition of thin-film Indium-Tin-Oxide layers by magnetron sputtering is the spacing between the anode and cathode electrodes, by which the conditions of plasma deposition and the properties of the resulting films are controlled. In this paper, thin ITO films are deposited on glass substrates using the DC-magnetron sputtering technique at RT for different electrode spacing. The thickness of the layers has been measured in the range 110-370 nm. The XRD studies confirm that crystalline structure of ITO is cubic bixbyite. The sheet resistance of the samples prepared at the electrode spacing of 5, 7, 9, and 11 cm, are 17.7, 16, 1723, and 5207 Ω/□, respectively. The transmittance of the films in the spectral range of 400-800nm is 75-85%. The lowest sheet resistance of 16 Ω/□ is obtained at the spacing of 7 cm, having a transparency of 85% and a thickness of 230nm, which confirms that it is appropriate for use as the transparent contact in amorphous silicon solar cells. For such samples the average grain size of the crystallites and the root-mean-square of the roughness of the surface are 50±5 nm and ≈1.97 nm, respectively. The process simulations are also achieved using xpdp1, X'Pert and MATLAB software.

کلیدواژه‌ها [English]

  • ITO thin films
  • DC magnetron sputtering
  • electrode spacing
  • sheet resistance
  • transmittance
  • electrical and optical properties
[1]      Ştefan Ţălu, Slawomir Kulesza, Miroslaw Bramowicz, Adam M. Pringle, Joshua M. Pearce, Marikkan Murugesan, Vishnukanthan Venkatachalapathy, J. Mayandi,” Micromorphology analysis of sputtered indium tin oxide fabricated with variable ambient combinations”, Materials Letters, vol. 220, pp. 169-171, 2018.
[2]      S.M. Rozati, T. Ganj, “Transparent conductive Sn-doped indium oxide thin films deposited by spray pyrolysis technique”, Renewable Energy, vol. 29, Issue 10, pp. 1671-1676, 2004.
[3]      Mirnmoy Misra, Deuk-Kyu Hwang, Yoon Cheol Kim, Jae-Min Myoung, Tae Il Lee, “Eco-friendly method of fabricating indium-tin-oxide thin films using pure aqueous sol-gel, Ceramics International”, vol. 44, Issue 3, pp. 2927-2933, 2018.
[4]      محرم غیاثوند، محمد ناصر مقدسی، عباسعلی لطفی نیستانک، علیرضا نیک فرجام، بهبود عملکرد محفظه­های الکترومغناطیسی غیر فلزی شفاف با استفاده از پوشش فیلم نانو لایه طلا، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 1، صفحه 205-197، 1397.
[5]      Cristian Viespe, Ionut Nicolae, Cornelia Sima, Constantin Grigoriu, Rares Medianu, “ITO thin films deposited by advanced pulsed laser deposition”, Thin Solid Films, vol. 515, Issue 24, pp. 8771-8775,  2007.
[6]      Bibhuti Bhusan Sahu, Wen Long, Jeon Geon Han, “Highly conductive flexible ultra thin ITO nanoclusters prepared by 3-D confined magnetron sputtering at a low temperature”, Scripta Materialia, vol. 149, pp. 98-102, 2018.
[7]      C. David, B.P. Tinkham, P. Prunici, A. Panckow, “Highly conductive and transparent ITO films deposited at low temperatures by pulsed DC magnetron sputtering from ceramic and metallic rotary targets”, Surface and Coatings Technology, vol. 314, pp. 113-117, 2017.
[8]      A. Mohammadi Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, “Effect of sputtering pressure and annealing temperature on the properties of indium tin oxide thin films”, Materials Science and Engineering: B, vol. 136, Issue 1, pp. 37-40, 2007.
[9]      M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan, and J. M. Pearce, “Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films”, AIP Advances, vol. 5, 2015.
[10]      K.P. Sibin, A. Carmel Mary Esther, H.D. Shashikala, Arjun Dey, N. Sridhara, Anand Kumar Sharma, Harish C. Barshilia, “Environmental stability of transparent and conducting ITO thin films coated on flexible FEP and Kapton® substrates for spacecraft applications”, Solar Energy Materials and Solar Cells, vol. 176, pp. 134-141, 2018.
[11]      Huafei Guo, Kezhi Zhang, Xuguang Jia, Changhao Ma, Ningyi Yuan, Jianning Ding, “Effect of ITO film deposition conditions on ITO and CdS films of semiconductor solar cells”, Optik - International Journal for Light and Electron Optics, vol. 140, pp. 322-330, 2017.
[12]      K. Okada, Sh. Kohiki, S. Luo, D. Sekiba, S. Ishii, M. Mitome, A. Kohno, T. Tajiri and F. Shoji, “Correlation between resistivity and oxygen vacancy of hydrogen-doped indium tin oxide thin films”, Thin Solid Films, vol. 519, Issue 11, pp. 3557–3561, 2011.
[13]      Sh. Qamar Hussain, W. K. Oh, Sh. Ahn, A. H. Tuan Le, S. Kim, S. M. Iftiquar, S. Velumani, Y. Lee and J. Yi, “Highly transparent RF magnetron-sputtered indium tin oxide films for a-Si:H/c-Si heterojunction solar cells amorphous/crystalline silicon”, Materials Science in Semiconductor Processing, vol. 24, pp. 225-230, 2014.
[14]      Zhixuan Lv, Jindong Liu, Dengyao Wang, Hualong Tao, Weichao Chen, Haoting Sun, Yanfei He, Xin Zhang, Zhiyu Qu, Zicheng Han, Xuelin Guo, Shiping Zhao, Yunxian Cui, Hualin Wang, Shimin Liu, Chaoqian Liu, Nan Wang, Weiwei Jiang, Weiping Chai, Wanyu Ding, “A simple route to prepare (100) preferred orientation indium tin oxide film onto polyimide substrate by direct current pulsed magnetron sputtering”, Materials Chemistry and Physics, vol. 209, pp. 38-45, 2018.
[15]      Shumei Song, Tianlin Yang, Jingjing Liu, Yanqing Xin, Yanhui Li, Shenghao Han, “Rapid thermal annealing of ITO films”, Applied Surface Science, vol. 257, Issue 16, pp. 7061-7064, 2011.
[16]      Z. Qiao, Fabrication and study of ITO thin films prepared by magnetron sputtering, Ph.D thesis, University of Duisburg-Essen, May 2003.
[17]      W. F. Wu, B. S. Chiou and S. T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, Semicond. Sci. Technol, vol. 9, pp. 1242-1249, 1994.
[18]      P. Gao, L. J. Meng, M. P. dos Santos, V. Teixeira and M. Andritschky, “Characterisation of ZrO2 films prepared by rf reactive sputtering at different O2 concentrations in the sputtering gases”, Vacuum, vol. 56, pp. 143-148, 2000.
[19]      C. V. R. Vasant Kumar and A. Mansingh, “Effect of target‐substrate distance on the growth and properties of rf‐sputtered indium tin oxide films”, J. Appl. Phys., vol. 65, pp. 1270, 1989.
[20]      J. L. Perry, Effects of sputter deposition parameters on stress in tantalum films with applications to chemical mechanical planarization of copper. Ph.D Thesis. Rochester Institute of Technology, 2004.
[21]      C. V. R. Vasant kumar and A. Mansingh,Effect of target‐substrate distance on the growth and properties of rf‐sputtered indium tin oxide films”, J. Appl. Phys., vol.65, pp. 1270-1280, 1989.
[22]      M. Shakiba, A. Kosarian and E. Farshidi, “Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film”, J Mater Sci: Mater Electron, vol. 28, pp. 787-797, 2017.
[23]      A. Kosarian, M. Shakiba, and E. Farshidi, “Role of Sputtering Power on the Microstructural and Electro-Optical Properties of ITO Thin Films Deposited Using DC Sputtering Technique”, IEEJ Transaction on Electrical and Electronic Engineering, vol. 13, Issue 1, pp. 27-31, 2018.
[24]      M. DM, Handbook of physical vapor deposition (PVD) processing, William Andrew, United States of America, April 2010.
[25]      Xpdp1 v.3.5 plasma simulation software, Plasma Theory and Simulation Group at University of California, Berkeley.
[26]      C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulations. Adam Hilger, IOP Publishing, Bristol, 1991.
[27]      V. Vahedi, M. Surendra, “A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges”, Computer Physics Communications, vol. 87, Issues 1–2,  pp. 179-198, 1995.
[28]      V. Vahedi, R. W. Stewart, and M. A. Lieberman, “Analytic model of the ion angular distribution in a collisional sheath”, J. Vac. Sci. Technol. A, vol. 11, Issue 4, pp. 1275, 1993.
[29]      D. K. Schroder, Semiconductor material and device characterization, Wiley, New York, 1990.
[30]      J. I. Pankove, Optical process in semiconductors, Dover Publications, Inc., New York, 1971.
[31]      G. Haacke, “New figure of merit for transparent conductors”, J. Appl. Phys., vol. 47, pp. 4086, 1976.