برنامه‌ریزی تأخیر برای بهبود میرایی نوسان توان در حضور تأخیرهای تصادفی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه آزاد - واحد علوم و تحقیقات تهران

2 دانشکده مهندسی برق و کامپیوتر - دانشگاه خواجه نصیر طوسی

چکیده

کارایی محرک­ها در یک سیستم­ تأخیر زمانی ممکن است به دلیل تحلیل پایداری محافظه‌کارانه محدود شود؛ یا این­که نتایج به­دست­آمده از روشهای بهینه­سازی که در پایدارسازی سیستم کنترلی مورد استفاده قرار میگیرند نسبت به وجود تاخیرهای تصادفی غیر قابل اطمینان شود. زمانیکه در حلقه فیدبک یک سیستم کنترل میرایی نوسان توان، (POD)، برای دریافت سیگنالهای راه دور از شبکه­های مخابراتی استفاده شود، طبیعتاً یک سیستم کنترل میرایی نوسان توان همراه با تأخیرهای تصادفی (POD-RD) شکل می­گیرد. در این مقاله، یک روش جدید طراحی برای بهبود عملکرد سیستم کنترل POD-RD­ برمبنای روش برنامه­ریزی تأخیردار سیگنال کنترلی پیشنهاد شده است. این روش در دو گام پیاده­سازی می­شود. در گام اول با بهینه­سازی حریم طیفی و با فرض مقدار میانگین برای تأخیرهای مخابراتی، مقدار اولیه تأخیر اعمالی به سیگنال کنترلی و نیز مقدار اولیه پارامترهای کنترل­کننده تعیین می­شوند. در گام بعد برای درنظرگرفتن اثر تصادفی تاخیرهای مخابراتی، در یک روند تکراری مقدار بهینه تاخیر در سیگنال کنترلی و نیز پارامترهای بهینه کنترل­کننده تعیین می­شوند. در این بهینه­سازی هدف حداقل کردن مقدار حریم طیفی و گشتاور مرتبه دوم حول آن تعریف شده است. امکان­سنجی روش پیشنهادی با شبیه­سازی و آزمایش بر روی سیستم آزمون چهار ماشینه ارزیابی شده است. نتایج حاکی از آن است که روش مذکور می­تواند عملکرد مقاومی را در سیستم قدرت مورد مطالعه بوجود آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Delay Scheduling to Improve Power Oscillation Damping in the Presence of Random Delays

نویسندگان [English]

  • R. Asghari 1
  • B. Mozafari 1
  • T. Amraee 2
1 Faculty of Electrical and Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Faculty of Electrical and Computer Engineering, University of K. N. Toosi, Tehran
چکیده [English]

Using a conservative stability analysis to design a time delay system controller usually cause a devaluation on the actuator performance. In addition, the results obtained considering deterministic stability criteria may not be reliable due to the existence of random delays. Whenever the feedback loop of a power system oscillation damping control system receives remote signals through communication networks, we face a POD system with random delays namely POD-RD system.  In this paper, a new design approach to promote the performance of a POD-RD control system is proposed based on the delay scheduling control signal method. This is a two-step method for implementation. In the first step assuming the average value of the communication random delays, the controller''''s parameters and also delay parameter of the control signal are determined as initial values by minimizing sperctral abscissa of the closed loop system. In the next step, to include impact of the communication random delays, a repetitive procedure is proposed to determine the optimal value of the delay parameter of the control signal and also the controller''''s parameters. The objective of the optimization model is to minimize the spectral abscissa and the defined second order moment. The feasibility of the proposed method is evaluated by doing a number of simulations on the standard four-machine test system.The results reveal that the method can make a robust performance in the studied system.

کلیدواژه‌ها [English]

  • Delay scheduling
  • power oscillation damping
  • random delays
  • spectral abscissa
[1]      مهدی، کراری، دینامیک و کنترل سیستم­های قدرت، چاپ اول، ویرایش اول، پلی­تکنیک تهران، مرکز نشر دانشگاه صنعتی امیر کبیر، 1382.
[2]      E. V. Larsen, J. J. Sanchez-Gasca, and J. H. Chow, “Concepts for design of FACTS controllers to damp power swings,” IEEE Trans. Power Syst., vol. 10, no. 2, pp. 948–956, May 1995.
[3]      داود فاتح، علی اکبر مطیع بیرجندی، رضا ابراهیم­پور، « افزایش میرایی نوسانات سیستم قدرت با جایابی UPFC بر اساس ضریب مانده و مدهای بحرانی»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 3، بهار 1393.
[4]      X. Xie, J. Xiao, C. Lu, and Y. Han, “Wide-area stability control for damping interarea oscillations of interconnected power systems,” IET Gen. Transm. Distrib. vol. 153, no. 5, pp. 507–514, Sep. 2006.
[5]      Y. Ge, Q. G. Chen, M. Jiang, Y. Q. Huang. "Modeling of random delays in networked control systems," Journal of Control Science and Engineering, vol. 2013, Article ID 383415, 2013.
[6]      L. X. Zhang, H. J. Gao, and O. Kaynak, “Network-induced constraints in networked control systems—a survey,” IEEE Trans. on Indus. Infor., vol. 9, no. 1, pp. 403–416, 2013.
[7]      W. Michiels and N. S. lulian, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Philadelphia: SIAM, 2007.
[8]      K. Zhu, M. Chenine, L. Nordstrom, S. Holmstrom, and G. Ericsson, "Design Requirements of Wide-Area Damping Systems Using Empirical Data From a Utility IP Network," IEEE Trans. on Smart Grid, vol.5, pp. 829-838, 2014.
[9]      M. Mokhtari, F. Aminifar, D. Nazarpour, and S. Golshannavaz, “Wide area power oscillation damping with a fuzzy controller compensating the continuous communication delays,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1997–2005, May 2013.
[10]      W. Yao, L. Jiang, Q. Wu, J. Wen, and S. Cheng, “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 233–240, Feb. 2011.
[11]      Y. Wei, L. Jiang, W. Jinyu, Q. H. Wu, and C. Shijie, “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 318–329, Jan. 2014.
[12]      Y. Li, Y. Zhou, F. Liu, Y. Cao, and C. Rehtanz, "Design and Implementation of Delay-Dependent Wide-Area Damping Control for Stability Enhancement of Power Systems," IEEE Trans. on Smart Grid, Vol. 8, no.4 , July 2017.
[13]      J. Li, Z. Chen, D. Cai, W. Zhen and Q. Huang, ”Delay-Dependent Stability Control for Power System With Multiple Time-Delays,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2316–2326, May. 2016.
[14]      R. Sipahi, S. I. Niculescu, C.T. Abdallah, W. Michiels and K. Gu, “Stability and stabilization of systems with time-delay limitations and opportunities”, IEEE Ctrl. Syst. Mag, vol. 31 no. 1, pp. 38–65, 2011.
[15]      R. Preece, A. M. Almutairi, O. Marjanovic and J. V. Milanovic, "Damping of inter-area oscillations using WAMS based supplementary controller installed at VSC based HVDC line," IEEE Trond. Power Tech., pp. 1-8, 2011.
[16]      B. Yang and Y. Sun, “Damping Factor Based Delay Margin for Wide Area Signals in Power System Damping Control,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3501–3502, Aug. 2013.
[17]      B. Yang, and Y. Sun, “IEEE A Novel Approach to Calculate Damping Factor Based Delay Margin for Wide Area Damping Control,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3116–3117, Nov. 2014.
[18]      B. Yang and Y. Z. Sun, "A new wide area damping controller design method considering signal transmission delay to damp inter area oscillations in power system," springer, Vol. 21, no. 11, pp. 4193–4198,  Nov. 2014.
[19]      سعید اباذری، مجتبی برخورداری، عباس عرب دردری، «طراحی کنترل­کننده مقاوم SVC مبتنی بر WAMS با در نظر گرفتن نامعینی تاخیر زمانی سیگنال­های راه دور»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، زمستان 1394.
[20]      K. Hirai and Y. Satoh, “Stability of a system with variable time delay,” IEEE Trans. Auto. Ctrl, vol. AC-25, no. 3, pp. 552–554, 1980.
[21]      S. Zhang and V. Vittal, “Design of wide-area power system damping controllers resilient to communication failures,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4292–4300, Nov. 2013
[22]      M. J. Alden and X. Wang, "Robust H control of time delayed power systems," Systems Science and Control Engineering, Vol. 3, no.1, pp. 253–261, 2015.
[23]       B. P. Padhy, S. C. Srivastava, and  N. K. Verma "A Wide-Area Damping Controller considering Network Input & Output Delays and Packet Drop,"   IEEE Trans. Power Syst., Vol. 32, no. 1, pp. 166 – 176, Jan. 2017.
[24]      N. T. Anh, L. Vanfretti, J. Driesen, and D. V. Hertem," A Quantitative Method to Determine ICT Delay Requirements for Wide-Area Power System Damping Controllers," IEEE Trans. Power Syst., Vol. 30, no. 4, pp. 2023 – 2030, July 2015.
[25]      M. Bhadu, N. Senroy, I. N. Kar, and G. N. Sudha, "Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller," IET Gen., Trans., Dist., Vol. 10, no.6 , April 2016.
[26]      C. Lu, X. Zhang, X. Wang, and Y. Han, “Mathematical expectation modeling of wide-area controlled power systems with stochastic time delay,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1511–1519, May 2015.
[27]      X. Zhang, C. Lu, X. Xie, and Z. Y. Dong, "Stability Analysis and Controller Design of a Wide-Area Time-Delay System Based on the Expectation Model Method," IEEE Trans. on Smart grid, Vol. 7, no. 1, pp. 520-529, JAN. 2016.
[28]      W. Michiels, “Spectrum-based stability analysis and stabilization of systems described by delay differential algebraic equations,” IET Ctrl Theo. App., vol.5, no.16, pp. 572 – 575, Nov. 2011.
[29]      Overton, M. L. in Spectral Analysis, Stability and Bifurcations 351–375 (Wiley-Blackwell, 2014).
[30]      D. Breda, and R. Vermiglio, “Stability of Linear Delay Differential Equations a Numerical Approach with MATLAB,’’ New York Heidelberg Dordrecht London: Springer, 2015.
[31]      P. Kundur, N. Balu, and M. Lauby, Power System Stability and Control, New York, NY, USA: McGraw-Hill Education, 1994.