طراحی هاب انرژی پایدار با درنظرگرفتن ریسک با استفاده از الگوریتم تجزیه بندرز

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی صنایع - پردیس دانشکده‌های فنی دانشگاه تهران

2 گروه مهندسی برق و کامپیوتر- دانشکده فنی شهید عباسپور- دانشگاه شهید بهشتی

چکیده

در این مقاله مدل برنامه­ریزی خطی مختلط عدد صحیح (MILP) برای طراحی پایدار هاب انرژی(EH)  ارائه شده است. برای دستیابی به EH  پایدار، چارچوب مدل­سازی برای درنظرگرفتن اثرات زیست­محیطی   و اجتماعی اجزای تشکیل­دهنده EH ، ارائه شده است. ابتدا، چرخه عمر اجزای مختلف سیستم به منظور تعیین اثرات زیست­محیطی و اجتماعی­شان، بررسی شده است. سپس، مدل ریاضی مسئله، با استفاده از برنامه­ریزی تصادفی مبتنی بر سناریو که از معیار ارزش در معرض ریسک شرطی (CVaR) به‌منظور کنترل ریسک ناشی از ماهیت غیرقطعی پارامترها در تابع هدف استفاده‌‎ می‌نماید توسعه یافته است. برای مدلسازی درست عدم قطعیت­ها، تعداد زیادی سناریو درنظرگرفته شده و مسئله به یک مسئله بهینه­سازی بزرگ تبدیل شده است. لذا برای حل مدل، الگوریتم تجزیه بندرز   (BD)برای مواجهه با حجم محاسبات بالا ارائه شده است. نتایج، کارایی الگوریتم BD پیشنهادی را در مقایسه با روش حل معمول CPLEX برای حل ابعاد بزرگ مسئله، نشان می­دهد. علاوه بر این نشان داده شده است که با درنظرگرفتن اثرات زیست­محیطی و اجتماعی در طراحی، سهم منابع انرژی تجدیدپذیر که دارای کمترین اثرات نامطلوب هستند، در جواب بهینه مسئله، افزایش یافته است. در پایان، کارایی معیار CVaR در کنترل سطح ریسک نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Benders decomposition algorithm for sustainable energy hub design under risk considering Conditional Value at Risk

نویسندگان [English]

  • S. Hemmati 1
  • S. F. Ghaderi 1
  • Ghazizadeh M. S. 2
1 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran
2 Department of Electrical and Computer Engineering, Shahid Beheshti University (Abbaspour Technical College), Tehran, Iran
چکیده [English]

This paper presents a mixed integer linear program (MILP) model as well as a solution method based on the Benders decomposition algorithm for optimal design of sustainable Energy Hub (EH). A modeling framework to consider environmental (Env) and social (Soc) impacts of the EH's components is incorporated to achieve sustainable EH. First, the life cycles of different components are analyzed in order to determine Env and Soc impacts. Then, the EH design model is developed by using scenarios-based stochastic programming integrating Conditional Value-at-Risk (CVaR) in its objective function as a risk criterion to deal with uncertain nature of parameters. Benders decomposition (BD) algorithm is used to decompose the original problem in order to address heavy computational burden of the problem, especially when a large number of scenarios is used to properly represent uncertainties. The results shows effectiveness of the proposed BD to handle large problem sizes compared to the CPLEX solver and indicates that taking the external cost into account resulted in higher renewable Distributed Energy Resources (DERs) in the optimal configuration, which have lower negative Env and Soc impacts. Also, strength of stochastic programming in handling data uncertainty and controlling risk level is investigated.

کلیدواژه‌ها [English]

  • Sustainable Energy Hub
  • Stochastic Programming
  • CVaR
  • Benders Decomposition
[1]      M. Dombi, I. Kuti, and P. Balogh, “Sustainability assessment of renewable power and heat generation technologies”. Energy Policy, vol. 67, pp. 264-271, 2014.
[2]      J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. Turnure and L. Westfall, International Energy Outlook 2016 With Projections to 2040, United States, Office of Energy Analysis, doi:10.2172/1296780, 2016.
[3]      B. Mainali and S. Silveira, “Using a sustainability index to assess energy technologies for rural electrification,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 1351-1365, 2015.
[4]      D.G. Carrera, and A. Mack, “Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts,” Energy Policy. vol.38, no. 2, pp. 1030-1039, 2010.
[5]      F. Dehghanian, and S. Mansour, “Designing sustainable recovery network of end-of-life products using genetic algorithm,” Resources, Conservation and Recycling, vol. 53, no. 10, pp. 559-570, 2009.
[6]      J. Butlin, Our Common Future. By World Commission on Environment and Development, London, Oxford University Press, Wiley Online Library, 1989.
[7]      H. Gujba, Y. Mulugetta and A. Azapagic, “Environmental and economic appraisal of power generation capacity expansion plan in Nigeria,” Energy Policy, vol. 38, no. 10, pp. 5636-5652,2010.
[8]      T. Biegler and D. K. Zhang, The Hidden Costs of Electricity: Externalities of Power Generation in Australia, Australian Academy of Technological Science and Engineering, 2009.
[9]      L. I. Dulau, M. Abrudean and D. Bică, “Effects of distributed generation on electric power system,” Procedia Technology, vol. 12, pp. 681-686, 2014.
[10]      P. Siano, “Demand response and smart grids —A survey,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 461-478, 2014.
[11]      F. Li, R. Li and F. Zhou, Microgrid Technology and Engineering Application, Elsevier, 2015.
[12]      M. Geidl and G. Andersson, “Operational and structural optimization of multi‐carrier energy systems,”European Transactions on Electrical Power, vol. 16, no. 5, pp. 463-47, 2006.
[13]      W.Klibi, A. Martel and A. Guitouni, “The design of robust value-creating supply chain networks: a critical review,”European Journal of Operational Research, vol. 203, no. 2,  pp. 283-293,2010.
[14]      W. J. Baumol and A.S. Blinder, Microeconomics: Principles and Policy, Cengage Learning, 2015.
[15]      T, Sundqvist, Power Generation Choice in The Presence of Environmental Externalities, Ph.D. Thesis, Lulea University of Technology, 2002.
[16]      P. Bickel and R. Friedrich, ExternE: Externalities of Energy: Methodology 2005    Update. EUR 21951 EN, European Communities, 2005.
[17]      A. Evans, V. Strezov and T. J. Evans, “Assessment of sustainability indicators for renewable energy technologies,” Renewable and Sustainable Energy Reviews, vol. 13, no. 5, pp. 1082-1088, 2009.
[18]      Ch. Wang, B. Jiao, G. Li, K. Yuan and B. Sun, “Optimal planning of stand-alone microgrids incorporating reliability,” Journal of Modern Power Systems and Clean Energy, vol. 2, no. 3, pp. 195-205, 2014.
[19]      A. Khodaei, S. Bahramirad and M. Shahidehpour, “Microgrid planning under uncertainty,”IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2417-2425,2015.
[20]      حسن براتی, و فرشید عشیر, «مدیریت و کمینه‌سازی هزینه انرژی با ساختار نیروگاه مجازی و در نظر گرفتن خودروهای الکتریکی هیبریدی قابل اتصال به شبکه»، مجله مهندسی برق دانشگاه تبریز, دوره 47، شماره 2، صفحه 401-412، 1396.
[21]      داود روشن­دوست, رحمت­اله هوشمند، اسکندر قلی­پور، مصطفی نصرت­آبادی، «طراحی یک سیستم مدیریت انرژی برای یک ریزشبکه‌ صنعتی مبتنی بر منابع CHP از طریق برنامه‌ریزی تولید و پاسخ تقاضا»، مجله مهندسی برق دانشگاه تبریز, دوره 46، شماره 3، صفحه 197-209، 1395.
[22]      Z. Shi, Y. Peng and W. Wei. “Optimal sizing of DGs and storage for microgrid with interruptible load using improved NSGA-II,” IEEE Congress on Evolutionary Computation (CEC), 2014.
[23]      D. Zhang, S. Evangelisti, P. Lettieri, L. G. Papageorgiou, “Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment,” Energy, vol. 85, pp. 181-193, 2015.
[24]      S. Pazouki and M. R. Haghifam, “Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty,” International Journal of Electrical Power & Energy Systems, vol. 80, pp.219-239, 2016.
[25]      M. H. Shariatkhah, M. R. Haghifam, G. Chicco and M, Parsa-Moghaddam, “Adequacy modeling and evaluation of multi-carrier energy systems to supply energy services from different infrastructures,”Energy, vol. 109, pp. 1095-1106, 2016.
[26]      M. Marzband, F. Azarinejadian, M. Savaghebi and  J. M. Guerrero, “An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with Markov chain,” IEEE Systems Journal,  vol. 11, Issue. 3, 2015.
[27]      M. Marzband, F. Azarinejadian, M. Savaghebi, E. Pouresmaeil, J. M. Guerrero and G. Lightbody, “Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations,” Renewable Energy, vol. 126, pp. 95-106, 2018.
[28]      M. Marzband, M. Ghadimi, A. Sumper and J. L. Domínguez-García, “Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode,” Applied energy, vol. 128, pp. 164-174, 2014.
[29]      M. Marzband, M. Javadi, J. L. Domínguez-García and M. Mirhosseini-Moghaddam, “Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties,” IET Generation, Transmission & Distribution, vol. 10, no. 12, pp. 2999-3009, 2016.
[30]      M. Marzband M. Javadi, S. Ali-Pourmousavi and G. Lightbody, “An advanced retail electricity market for active distribution systems and home microgrid interoperability based on game theory,”Electric Power Systems Research, vol. 157, pp. 187-199, 2018.
[31]      M. Marzband, N. Parhizi, M. Savaghebi and J. M. Guerrero,  “Distributed smart decision-making for a multimicrogrid system based on a hierarchical interactive architecture,”IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 637-648, 2016.
[32]      M. Marzband, A. Sumper, J. L. Domínguez-García and R. Gumara-Ferret, “Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP,” Energy Conversion and Management, vol. 76,  pp. 314-322, 2013.
[33]      P. Vithayasrichareon, I.F. MacGill and T. Nakawiro, “Assessing the sustainability challenges for electricity industries inASEAN newly industrialising countries,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4,  pp. 2217-2233, 2012.
[34]      K. Hacatoglu, A Systems Approach to Assessing The Sustainability of Hybrid Community Energy Systems, Ph.D. Thesis,University of Ontario Institute of Technology, 2014
[35]      E. Santoyo-Castelazo and A. Azapagic, “Sustainability assessment of energy systems: integrating environmental, economic and social aspects,” Journal of Cleaner Production, vol. 80, p. 119-138, 2014.
[36]      A. Maxim, “Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis,” Energy Policy, vol. 65, p. 284-297, 2014.
[37]      A. I. Chatzimouratidis and P. A. Pilavachi, “Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process,” Energy policy, vol. 37, no. 3,  p. 778-787, 2009.
[38]      S. Roth, S. Hirschberg, Ch. Bauer, P. Burgherr, R. Dones, Th. Heck and W. Schenler, “Sustainability of electricity supply technology portfolio,” Annals of Nuclear Energy, vol. 36, no. 3, pp. 409-416, 2009.
[39]      A. Markandya, “Externalities from electricity generation and renewable energy: methodology and application in Europe and Spain,” Cuadernos económicos de ICE, no. 83, pp. 85-100, 2012.
[40]      A. Ç. Köne, “The Social Cost of Energy: External Cost Assessment for Turkey,” Energy Systems and Management, Springer, Cham, pp. 253-259, 2015.
[41]      D. Streimikiene and I. Alisauskaite-Seskiene, “External costs of electricity generation options in Lithuania,” Renewable Energy, vol. 64, pp. 215-224, 2014.
[42]      G. Theodosiou, N. Stylos and C. Koroneos, “Integration of the environmental management aspect in the optimization of the design and planning of energy systems,” Journal of Cleaner Production, vol. 10, pp. 576-593, 2015.
[43]      A. T. Rezvan, N. S. Gharneh and G. Gharehpetian, “Robust optimization of distributed generation investment in buildings,” Energy, vol. 48, no. 1, pp. 455-463, 2012.
[44]      A. J. Conejo, M. Carrión and J. M. Morales, Decision Making under Uncertainty in Electricity Markets, Springer, vol. 1, 2010.
[45]      H. Gujba, Y. Mulugetta and A. Azapagic, “Power generation scenarios for Nigeria: An environmental and cost assessment,” Energy Policy, vol. 39, no.2, pp. 968-980, 2011.
[46]      S. M. Kazemi and M. Rabbani, “An integrated decentralized energy planning model considering demand-side management and environmental measures,” Journal of Energy, vol. 2013, 2013.
[47]      S. Hemmati, S. F. Ghaderi and M. S. Ghazizadeh, “Sustainable energy hub design under uncertainty using Benders decomposition method,” Energy, vol. 143, pp. 1029-1047, 2018
[48]      H. Seifi and M. S. Sepasian, Electric Power System Planning: Issues, Algorithms And Solutions, Springer Science & Business Media, 2011.
[49]      M. El-Sayed, N. Afia and A. El-Kharbotly, “A stochastic model for forward–reverse logistics network design under risk,” Computers & Industrial Engineering, vol. 58, no. 3, pp. 423-431, 2010.
[50]      W. Buehring, C. Huber, and J.M. de Souza, Expansion Planning for Electrical Generating Systems: A Guidebook, International Atomic Energy Agency–IAEA, Vienna, 1984.
[51]      O. IEA and N. E. Action, Projected Costs of Generating Electricity, International Energy Agency and Nuclear Energy Agency, France, 2010.
[52]      Energy Homer. Energy Modeling Software for Hybrid Renewable Energy Systems. Available from: http://homerenergy.com/.
[53]      T. Lambert, P. Gilman and P. Lilienthal, Micropower System Modeling With Homer, In Integration Of Alternative Sources Of Energy, John Wiley & Sons, Inc. pp. 379-418, 2006.
[54]      M. Sharafi and T. Y. ElMekkawy, “Stochastic optimization of hybrid renewable energy systems using sampling average method,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1668-1679, 2015.
[55]      H. Long, M. Eghlimi and Z. Zhang, “Configuration Optimization and Analysis of a Grid-connected PV/wind System,” IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 84-93, 2017.
[56]      Z. Liu, F. Wen and G. Ledwich, “Optimal siting and sizing of distributed generators in distribution systems considering uncertainties,” IEEE Transactions on power delivery, vol. 26, no. 4, pp. 2541-2551, 2011.