متعادل‌سازی ولتاژ نقطه اتصال مشترک منبع تولید پراکنده با استفاده از قاب مرجع سنکرون دوگانه مجزا

شناسنامه علمی شماره

نویسندگان

گروه برق - دانشکده فنی و مهندسی- دانشگاه رازی

چکیده

نامتعادلی ولتاژ باعث کاهش کیفیت توان الکتریکی و بروز مشکلاتی در تجهیزات مشترکین و در بهره­برداری از شبکه­ها به­ویژه شبکه­های دارای منابع تولید پراکنده (DG) می­شود. استفاده از منابع تولید پراکنده کنترل­شونده توسط اینورتر در ریزشبکه­ها، این امکان را به وجود آورده­است تا نامتعادلی ولتاژ توسط واحدهای تولید پراکنده جبران شود. برای جبران­سازی نامتعادلی ولتاژ، معمولاً از دو حلقه کنترلی برای کنترل مولفه­های مثبت و منفی در قاب چرخان dq استفاده می­شود. با این وجود، حلقه­های کنترلی توالی مثبت و منفی به­طور کامل از یک­دیگر مجزا نبوده و یک کوپل نوسانی بین آن­ها وجود دارد. در این مقاله، استفاده از قاب مرجع سنکرون دوگانه مجزا برای حذف کوپل نوسانی و جبران­سازی نامتعادلی ولتاژ پیشنهاد شده­است. نتایج شبیه­سازی نشان می­دهد، با استفاده از روش کنترلی پیشنهادی، نامتعادلی ولتاژ در نقطه اتصال مشترک به­طور موثری کاهش می­یابد. همچنین، به­دلیل مجزا­شدن حلقه کنترلی توالی مثبت از حلقه کنترلی توالی منفی، عمل­کرد واحد تولید پراکنده در تزریق توان به شبکه، تحت­تاثیر سیستم کنترل نامتعادلی ولتاژ پیشنهادی قرار نمی­گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Voltage Balancing at the Point of Common Coupling of DG Unit Using Decoupled Double Synchronous Reference Frame

نویسندگان [English]

  • P. Sharafi
  • Sh. Karimi
Department of Electrical Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Voltage unbalance reduces the power quality and causes problems in the customer equipment and in the grids operation, especially in grids including distributed generation sources. In microgrids, use of distributed generation sources controlled by the inverter, has made it possible to compensate voltage unbalance by distributed generation units. To compensate voltage unbalance, usually two control loops are used to control the positive and negative components in the dq rotary frame. Nevertheless, the control loops of the positive and negative sequences are not completely decoupled from each other and there is an oscillatory coupling between them. In this paper, the use of the decoupled double synchronous reference frame in order to eliminate oscillating couplings and for voltage unbalance compensation is proposed. The simulation results show that, using the proposed control method, the voltage unbalance at the point of common coupling is effectively reduced. Also, due to the decoupling of the positive sequence from the negative sequence control loop, the performance of the distributed generation unit in the power injection to the grid is not affected by the voltage unbalance control system.

کلیدواژه‌ها [English]

  • Voltage unbalance compensation
  • microgrid
  • decoupled double synchronous reference frame
  • droop control
  • current controller
[1]      A. Ghosh, G. Ledwich, "power quality enhancement using custom power devices" springer 2012
[2]      N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, "Microgrids," in IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78-94, July-Aug. 2007.
[3]      M. Erol-Kantarci, B. Kantarci and H. T. Mouftah, "Reliable overlay topology design for the smart microgrid network," in IEEE Network, vol. 25, no. 5, pp. 38-43, September-October 2011.
[4]      L. Tzung-Lin, H. Shang-Hung, and C. Yu-Hung, “D-STATCOM With Positive -Sequence Admittance and Negative-Sequence Conductance to Mitigate Voltage Fluctuations in High-Level Penetration of Distributed-Generation Systems, ” , IEEE Transactions on Industrial Electronics, vol. 60, pp. 1417-1428, 2013.
[5]      A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance, ”  IEEE Transactions on Power Delivery, vol. 16, no. 4, pp. 782-790, Oct 2001.
[6]      Yun Wei Li, Poh Chiang Loh, F. Blaabjerg and D. M. Vilathgamuwa, “Investigation and improvement of transient response of DVR at medium voltage level,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006.
[7] محمد نبی پور، مرتضی رزاز، سیدقدرت الله سیف السادات و سیدسعیدالله مرتضوی،«کنترل ولتاژ تزریقی DVR توسط کنترل کننده تطبیقی جدید دوگانه در جبران انواع خطاهای شبکه»، فصلنامه مهندسی برق دانشگاه تبریز، 46 (شماره 2)، 307-321، تابستان 1395.
[8] ابراهیم بابایی و محمد فرهادی کنگرلو، «بازیاب دینامیکی ولتاژ بر پایه مبدل­های ماتریسی»، فصلنامه مهندسی برق دانشگاه تبریز، 40 (شماره 1)، 1389.
[9]      L. Kuang, L. Jinjun, W. Zhaoan, and W. Biao, “Strategies and Operating Point Optimization of STATCOM Control for Voltage Unbalance Mitigation in Three-Phase Three-Wire Systems, ” IEEE Transactions on Power Delivery, vol. 22, pp. 413-422, 2007.
[10]      H.-S. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 953–959, Oct. 1999.
[11]      M. Savaghebi, A. Jalilian, J. C. Vasquez, J. M. Guerrero, “Secondary Control Scheme for Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid”, IEEE Transactions on Smart Grid, Vol. 3, No 2, pp. 797 807, June 2012.
[12]      M. Savaghebi, A. Jalilian, J. C. Vasquez, J. M. Guerrero, “Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1390–1402, Apr 2013.
[13]      L. Meng, F. Tang, M. Savaghebi, J. C. Vasquez, J. M. Guerrero, “Tertiary Control of Voltage Unbalance Compensation for Optimal Power Quality in Islanded Microgrids,” IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 802–815, Dec 2014.
[14]      Mohsen Hamzeh, H. Karimi, H. Mokhtari, “A New Control Strategy for a Multi- Bus MV Microgrid Under Unbalanced Conditions,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2225–2232, Nov 2012.
[15]      Y. Li, D. M. Vilathgamuwa, P. C. Loh, “Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator,” IEEE Transactions on Industry Applications, vol. 41, no. 6, pp. 1707-1719, Nov/Dec. 2005.
[16]      L. Meng, X. Zhao, F. Tang, M. Savaghebi, T. Dragicevic, J. C. Vasquez, J. Guerrero, "Distributed Voltage Unbalance compensation in Islanded Microgrids Using a Dynamic Consensus Algorithm" IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 827-838, Jan 2016.
[17]      A. Camacho, M. Castilla, J. Miret, A. Borrell, L. G. de Vicua, “Active and Reactive Power Strategies With Peak Current Limitation for Distributed Generation Inverters During Unbalanced Grid Faults,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1515-1525, Mar 2015.
[18]      N. R. Merritt, C. Chakraborty and P. Bajpai, "New Voltage Control Strategies for VSC based DG Units in an Unbalanced Microgrid”, IEEE Transactions on Sustainable Energy, DOI 10.1109/TSTE.2017.2657660, 2017.
[19]      Amirnaser Yazdani, Reza Iravani, “Voltage-Sourced Converters in Power System /Molding, Control, and Applications,” Wiley, 2010.
[20]      A. Yazdani, "Control of an islanded Distributed Energy Resource unit with load compensating feed-forward," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, pp. 1-7, 2008.
[21]      M. B. Delghavi, A. Yazdani, “Islanded-Mode Control of Electronically Coupled Distributed-Resource Units under Unbalanced and Nonlinear Load Conditions,” IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 661–673, Apr 2011.
[22]      N. R. Merritt, C. Chakraborty and P. Bajpai, "A control strategy for islanded operation of a Voltage Source Converter (VSC) based distributed resource unit under unbalanced conditions," 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, pp. 1550-1555, 2015.
[23]      F. Nejabatkhah, Y. W. Li and B. Wu, "Control Strategies of Three-Phase Distributed Generation Inverters for Grid Unbalanced Voltage Compensation," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5228-5241, July 2016.
[24]      M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu and J. M. Carrasco, "Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions," in IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 3934-3943, Sept. 2012.