استفاده از روش ترکیبی فعال-غیرفعال در تنظیم میزان مشارکت مبدل‌های متصل‌کننده موازی در ریزشبکه ترکیبی AC-DC در حالت جزیره‌ای

شناسنامه علمی شماره

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه بیرجند

2 دانشکده مهندسی برق - قطب علمی اتوماسیون و بهره‌برداری سیستم‌های قدرت – دانشگاه علم و صنعت ایران

چکیده

در این مقاله، با استفاده از یک روش کنترلی ترکیبی که شامل روش کنترلی فعال (چرخش زنجیری) و روش کنترلی غیرفعال (کنترل افتی) است، سهم هر مبدل متصل‌کننده (IC) از توان انتقالی بین دو زیرشبکه AC و DC در شرایط جزیره‌ای، تعیین می‌شود. میزان توان حقیقی در زیرشبکه AC و DC به‌ترتیب با فرکانس زیرشبکه AC و ولتاژ زیرشبکه DC مرتبط هستند. بنابراین با استفاده از این داده‌ها و تعریف یک رابطه افتی، مقدار اولیه توان انتقالی بین دو زیرشبکه AC و DC تعیین می‌شود. سپس، سیستم کنترل فعال باتوجه‌به داده‌های منتقل‌شده از مبدل پیشین، میزان توان مبادله‌شده را تصحیح می‌کند. استفاده از پارامتر توان در روش کنترل فعال، باعث کاهش پهنای باند خطوط ارتباطی بین مبدل‌ها می‌شود. ازسوی‌دیگر، درصورت قطع خطوط ارتباطی، کنترل دو مرحله‌ای تعیین میزان توان انتقالی باعث می‌شود که پایداری سیستم حفظ شود. اگرچه، سیستم کنترل چرخش زنجیری ارائه‌شده در این مقاله به‌ازای قطع ارتباط یک IC با IC مجاور، هم‌چنان فعال خواهدبود. نتایج شبیه‌سازی‌های انجام‌شده در نرم افزار MATLAB، صحت موارد ذکرشده را تائید می‌نماید.


 

کلیدواژه‌ها


عنوان مقاله [English]

Use of hybrid active/inactive method to regulate power sharing between parallel ICs in hybrid AC-DC microgrid in the islanding mode

نویسندگان [English]

  • S. H. Tabatabaei 1
  • M. Ebadian 1
  • A. Jalilian 2
1 Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
2 Department of Electrical Engineering -Center of Excellence for Power System Automation and Operation - Iran University of Science and Technology
چکیده [English]

In this paper, using a hybrid control method including an active control method (circular chain) and an inactive control method (droop control), the contribution of each interlinking converter (IC) to the power transmitted between AC and DC subnetworks in islanded mode is determined. The values of real power in AC and DC sub-grids correspond to the frequency of AC sub-grid and the voltage of the DC sub-grid, respectively. Therefore, using this data and defining a droop relation, the value of initial power transmitted between AC and DC subnetworks is determined. Then, the active control system modifies the transmitted power considering the data received from the previous converter. The use of power parameter in the active control method decreases the bandwidth of transmission lines between the converters. On the other hand, two-stage control for determining the value of transmitted power retains the stability of the system in case of a disruption in transmission lines. However, the circular chain control system presented in this paper will continue to operate in case of disruption in the link between two adjacent ICs. The results of simulation in MATLAB confirm the credibility of the mentioned arguments.

کلیدواژه‌ها [English]

  • Hybrid ac-dc microgrid
  • parallel interlinking converter
  • circular chain control
  • droop control
  • power sharing
[1]      K. Strunz, E. Abbasi, and D. N. Huu, “DC microgrid for wind and solar power integration,” IEEE J. of Emerging and Selected Topics in Power Elec., Vol. 2, No. 1, March 2014.
[2]      H. Xie, S. Zheng and M. Ni, “Microgrid development in china: a method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid,” IEEE Electrification Magazine, Vol. 5, No. 2, pp. 28-35, June 2017.
[3]      Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distributed secondary control for islanded microgrids - a novel approach,” IEEE Trans. on Power Elec., Vol. 29, No. 2, pp. 1018-1031, Feb. 2014.
[4]      F. Nejabatkhah, and Y. W. Li, “Overview of power management strategies of hybrid ac/dc microgrid,” IEEE Trans. on Power Elec., Vol. 30, No. 12, pp. 7072-7089, Dec. 2015.
[5]      A. Gupta, S. Doolla and K. Chatterjee, “Hybrid AC-DC microgrid: systematic evaluation of control strategies,” IEEE Trans. on Smart Grid, Vol. 9, No. 4, 2018.
[6]      Y. Pei, G. Jiang, X. Yang, and Z. Wang, “Auto-master-slave control technique of parallel inverters in distributed ac power systems and UPS,” in Proc. 35th Annual IEEE Power Elec. Specialists Conf., 2004, Germany.
[7]      K. Siri, C. Q. Lee, and T. F. Wu, “Current distribution control for paralle1 connected converters: part II,” IEEE Trans. on Aerospace And Electronic Syst., Vol. 28, No. 3, pp. 841-851, July 1992.
[8]      W. Tsai-Fu, C. Yu-Kai, and H. Yong-Heh, “3C strategy for inverters in parallel operation achieving an equal current distribution,” IEEE Trans. on Ind. Electron., Vol. 47, No. 2, pp. 273–281, Apr. 2000.
[9]      J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids – part I: decentralized and hierarchical control,” IEEE Trans. on Ind. Elec., Vol.60, No.4, pp.1254-1262, April 2013.
[10]      R. Kolluri, I. Mareels, T. Alpcan, M. Brazil, J. de Hoog, and D. A. Thomas, “Power sharing in angle droop controlled microgrids,” IEEE Trans. on Power Systems, Vol. 32, No. 6, 2017.
[11]      W. Yao, M. Chen, J. Matas, J. M. Guerrero, and Z.-M. Qian, “Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing,” IEEE Trans. on Ind. Elec., Vol. 58, No. 2, pp. 576-588, Feb. 2011.
[12]      N. L. Diaz, T. Dragiˇ cevi´ c, J. C. Vasquez, and J. M. Guerrero, “Intelligent distributed generation and storage units for dc microgrids—a new concept on cooperative control without communications beyond droop control,” IEEE Trans. on Smart Grid, Vol. 5, No. 5, pp. 2476-2485, 2014.
[13]      امین رنجبران، محمود عبادیان، «ارائه روش کنترلی به منظور تنظیم دقیق ولتاژ بار و تقسیم دقیق توان‌های اکتیو و راکتیو ریزشبکه»، مجله مهتدسی برق دانشگاه تبریز، جلد 47، ص 1047-1058، شماره 3، پاییز 1396.
[14]      سیدعباس صارمی حصاری حصاری، محسن حمزه و احمد سالم‌نیا، «بهبود عملکرد دینامیکی و استاتیکی سیستم تقسیم توان در ریزشبکه‌ها در حالت جزیره‌ای»، مجله مهتدسی برق دانشگاه تبریز، جلد 46، شماره 1، ص 233-243، بهار 1395.
[15]      L. Y. Wei, and K. Ching-Nan, "An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid," IEEE Trans. on Power Elec., Vol. 24, No. 12, pp. 2977- 2988, 2009.
[16]      P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with ac and dc sub-grids,” IEEE Trans. on Power Elec., Vol. 28, No. 5, pp. 2214-2223, 2013.
[17]      Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator,” IEEE Trans. on Ind. Appl., VOL. 41, NO. 6, pp. 1707- 1719, Nov/Dec. 2005.
[18]      B. Johansson, DC-DC converters dynamic model design and experimental verification, PhD thesis Lund University, Sweden, 2004.
[19]      D. G. Holmes, T.A. Lipo, B. P. McGrath, and W. Y. Kong “Optimized design of stationary frame three phase ac current regulators,” IEEE Trans. on Power Elec., vol. 24, no. 11, pp. 2417-2426, Nov. 2009.
[20]      P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of ac-dc microgrids with minimised interlinking energy flow,” IET Power Elec., Vol. 6, No. 8, pp. 1650–1657, 2013.
[21]      X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy,” IEEE Trans. on Power Elec., Vol. 9, No. 4, pp.1800-1812, 2014.