طراحی کنترل‌کننده تحمل‌پذیر عیب عملگر برای پرنده هوایی مافوق صوت با دینامیک غیرخطی

شناسنامه علمی شماره

نویسندگان

دانشکده مهندسی برق - دانشگاه علم و صنعت ایران

چکیده

در این مقاله ابتدا روش جدیدی برای طراحی خلبان خودکار پرنده هوایی با مدل غیرخطی چندجمله‌ای ارائه می‌شود. این روش طراحی بر مبنای طراحی کنترل‌کننده پایدارساز سیستم غیرخطی چندجمله‌ای و با استفاده از تئوری مجموع مربعات صورت می‌گیرد. روش‌های تئوری انجام­شده در کارهای پیشین، با ارتقای کنترل‌کننده از حالت پایدارساز به ردیاب توسعه داده شده‌است. همچنین در ادامه برای بهینه­سازی عملکرد،  طراحی کنترل‌کننده از مسئله امکان‌پذیری به مسئله بهینه‌سازی تبدیل شده‌است. پایداری سیستم کنترل حلقه بسته با معرفی تابع لیاپانوف که از روش مجموع مربعات به‌دست می‌آید تضمین می‌شود. در ادامه با بهره‌گیری از تئوری پیشنهادی کنترل‌کننده ردیاب و ارائه روش جدید‌ ترکیبی تصویر و طراحی مجدد ، طراحی خلبان خودکار تحمل‌پذیر عیب عملگر انجام شده‌است. الگوریتم جدید طراحی برای مدل یک پرنده هوایی مافوق صوت با مدل غیرخطی شبیه‌سازی شده است. نتایج به‌دست­آمده عملکرد مناسب این روش را در شرایط عادی و در هنگام بروز عیب‌های مختلف در عملگر نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Fault Tolerant Controller Design for Nonlinear Air Vehicle Model

نویسندگان [English]

  • B. Sobhani Gundushmian
  • S. Shamaghdari
School of Electrical Engineering, University of Science and Technology of Iran
چکیده [English]

In this paper, a new method for designing autopilot for an air vehicle with polynomial nonlinear model is presented. Moreover the method is developed to fault tolerant control autopilot using combined projection and redesign methods. The nominal autopilot has been designed based on regulator controller for the polynomial nonlinear model and sum of square optimization theory. Previous theoretical methods have been extended from the regulator type to the tracking. Stability of the closed loop system is guaranteed by introducing a polynomial Lyapunov function that is derived using sum of squares optimization method. Then, the feasibility problem has been changed to the optimization problem. The proposed method has been used on an air vehicle supersonic with nonlinear polynomial model. The results showed proper operation in normal and faulty situations.

کلیدواژه‌ها [English]

  • Fault Tolerant Control (FTC)
  • stability
  • polynomial nonlinear system
  • projection method
  • redesign method
  • sum of squares optimization
[1]      Youmin Zhang and Jin Jiang, “Issues on integration of fault diagnosis and reconfigurable control in active fault-tolerant control sestems,” IFAC Fault detection, supervision and safety of technical processes, Beijing 2006.
[2]      J.Lunze and J.H.Richter, “Reconfigurable fault-tolerant control: A tutorial introduction,” European Journal of control, vol. 14, no. 5, pp. 359-386, 2008.
[3]      Xiang Yu and Jin Jiang, “A survey of fault-tolerant controllers based on safety-related issues,Annual reviews in control, vol. 39, pp. 46-57, 2015.
[4]      M.Benosman and K.Y.Lum, “Application of passivity and cascade structure to robust control against loss of actuator effectiveness,” International Journal of Robust and Nonlinear Control, vol. 20, no. 6, pp. 673–693, 2010.
[5]      J.Jiang, and Q.Zhao, “ Design of reliable control systems possessing actuator Redundancies,” Journal of Guidance, control and dynamics, vol. 23, no. 4, pp. 709–718, 2000.
[6]      R.R.Wang and J.M.Wang, “Passive actautor fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles,” IEEETransactions on Vehicular Technology, vol. 62, no. 3, pp. 972–985, 2013.
[7]      M.Benosman, and K.Y.Lum, “Passive actuators’ fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp. 152–163, 2010.
[8]      J.Aravena, K.Zhou , Li XR and F.Chowdhury, "Faulttolerant safe flight controller bank. In Proceedings ofthe 6th IFAC Symposium on Fault Detection, Supervisionand Safety of Technical Processes", (Safeprocess),pp 859–864, Beijing, 2006.
[9]      J.Jiang and X.Yu, “Fault-tolerant control systems: A comparative studybetween active and passive approaches,” Annual Reviews in Control, vol. 36, no. 1, pp, 60–72, 2012.
[10]      یاشار شب­بوئی حق، امیر ریخته­گر غیاثی و سهراب خان محمدی, «طراحی کنترل­کننده تحمل­پذیر عیب مدل لغزشی ترمینال غیرتکین برای سیستم­های غیرخطی برمبنای فیلتر کالمن توسعه یافته تطبیقی», مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4، زمستان 95
[11]      مریم کازرونی، علیرضا خیاطیان، سیدعلی‌اکبر صفوی, «کنترل غیرمتمرکز ∞H تحمل‌پذیر عیب بر اساس مشاهده‌گر برای سیستم‌های غیرخطی به‌هم متصل شامل تأخیر زمانی», مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، تابستان 1396
 
[12]      Sreenuch, T., et al. "Lateral acceleration control design of a non-linear homing missile using multi-objective evolutionary optimisation." Evolutionary Computation, CEC'03. Congress on. Vol. 2. IEEE, 2003.
[13]      Lin and Chun-Liang. "On the design of an adaptive fuzzy gain-scheduled autopilot." Proceedings of the American Control Conference (IEEE Cat. No. CH37301). Vol. 2. IEEE, 2002.
[14]      Das, Abhijit, et al. "Feedback linearization for a nonlinear skid-to-turn missile model." India Annual Conference, Proceedings of the IEEE INDICON. First. IEEE, 2004.
[15]      Prajna, Stephen, Antonis Papachristodoulou, and Fen Wu. "Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach."Control Conference. 5th Asian. Vol. 1. IEEE, 2004.
[16]      Ichihara, Hiroyuki. "Optimal control for polynomial systems using matrix sum of squares relaxations, “IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1048-1053, 2009.
[17]      Ma, HongJun, and GuangHong Yang. “Fault‐tolerant control synthesis for a class of nonlinear systems: Sum of squares optimization approach,”International Journal of Robust and Nonlinear Control, vol. 19, no. 5, pp. 591-610, 2009.
[18]      Tedrake, Russ, et al. “LQR-trees: Feedback motion planning via sums-of-squares verification,” The International Journal of Robotics Research, vol. 29, no. 8, pp. 1038-1052, 2010.
[19]      Ebenbauer, Christian, and Frank Allgöwer. “Analysis and design of polynomial control systems using dissipation inequalities and sum of squares,” Computers and chemical engineering, vol. 30, no. 10, pp.  1590-1602. 2006.
[20]      Anderson, James, and Antonis Papachristodoulou. “Robust nonlinear stability and performance analysis of an F/A‐18 aircraft model using sum of squares programming,” International Journal of Robust and Nonlinear Control, vol. 23, no. 10. pp. 1099-1114, 2013.
[21]      Krishnaswamy, Kailash, et al. "Analysis of aircraft pitch axis stability augmentation system using sum of squares optimization." Proceedings, American Control Conference. IEEE, 2005.
[22]      Ma, Hong-Jun, and Guang-Hong Yang. "FTC synthesis for nonlinear systems: sum of squares optimization approach." Decision and Control, 46th IEEE Conference on. IEEE, 2007.
[23]      Packard, Andrew, et al. Quantitative Local Analysis of Nonlinear Systems, (2009).
[24]      Lin, Dongyun, and Weiyao Lan. “Output feedback composite nonlinear feedback control for singular systems with input saturation,” Journal of the Franklin Institute. Vol. 352, no. 1, pp.  384-398, 2015.
[25]      Topcu, Ufuk. Quantitative local analysis of nonlinear systems. University of California, Berkeley., 2008.
Edward N.Hartley and Jan M.Maciejowski, “Reconfigurable predictive control for redundantly actuated systems with parameterised input constraints,” Systems and control letters, vol. 66, pp. 8-15, 2014