بهره‌برداری بازار زمان‌حقیقی تحت مکانیسم‌های تسویه تک‌قیمت و دوقیمت در حضور تولید توان بادی هم‌بسته

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق - دانشگاه صنعتی شاهرود

چکیده

 در این مقاله، اثر هم‌بستگی زمانی-مکانی تولید بادی بر هزینه عدم‌تعادل در بازار زمان‌حقیقی به‌طور آماری تحلیل می‌شود. بدین منظور، مسئله تسویه بازار زمان‌حقیقی فرمول‌بندی می‌شود. تولید بادی به‌صورت بار الکتریکی منفی مدل‌سازی می‌شود. بار الکتریکی نیز غیرحساس به تغییرات قیمت در نظر گرفته می‌شود. به‌علاوه، قیود مربوط به محدودیت‌های زمانی واحدها و محدودیت‌های شبکه در مدل تسویه بازار زمان‌حقیقی مدنظر قرار می‌گیرد. با استخراج هم‌بستگی زمان-مکانی تولید توان بادی از اطلاعات واقعی، عدم‌قطعیت تولید توان بادی به‌صورت مجموعه‌ای از سناریوها مدل‌سازی می‌شود. نتایج شبیه‌سازی برای سیستم 24-bus RTS ارائه می‌شود. اثرگذاری هم‌بستگی زمانی-مکانی تولید توان بادی بر قیمت بازار زمان‌حقیقی و هزینه عدم‌تعادل به کمک شبیه‌سازی آماری مطالعه می‌شود. همچنین اثر هم‌بستگی زمانی-مکانی تولید توان بادی بر هزینه عدم‌تعادل از دیدگاه تولیدکنندگان بادی تحت دو مکانیسم تسویه تک‌قیمت و دوقیمت به‌صورت آماری در نظر گرفته می‌شود. نتایج برای حالات مختلف نشان می‌دهد متوسط درآمد (هزینه) ناشی از اضافه (کمبود) تولید تولیدکنندگان بادی در مکانیسم تسویه تک‌قیمت بیشتر (کمتر) است. اگرچه اختلاف انحراف‌معیار درآمد (هزینه) تولیدکنندگان بادی در این دو مکانیسم تسویه تحت‌تأثیر خطای پیش‌بینی تولید بادی می‌تواند مثبت یا منفی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Real-Time Market Operation under Single- and Dual-Price Settlement Mech-anisms in Presence of Correlated Wind Power Production

نویسندگان [English]

  • I. Amirjani Marvi
  • M. Rahimiyan
  • R. Arjmand
Department of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In this paper, impact of spatio-temporal correlation of wind production on imbalance cost in real-time market is statistically analyzed. To achieve this goal, the market clearing problem of the real-time market is formulated. Wind power production is modeled as negative electric load, which is assumed to be inelastic. Inter-temporal constraints of generating units and transmission limitations are incorporated into the market clearing model. Wind power uncertainty is modeled through a set of scenarios based on spatio-temporal correlation among wind farms captured from real-world historical data. Simulation results are provided through IEEE 24-bus Reliability Test System. The impact of spatio-temporal correlation of wind power production on real-time market price and associated imbalance cost is statistically studied. Additionally, its impact on imbalance cost incurred by wind producers under single- and dual-price settlement mechanisms is investigated. Results obtained in different cases show that expectation of revenue (cost) resulting from wind power generation excess (deficit) in single-price settlement mechanism are more (less) than the other mechanism. However, difference between standard deviations of wind producers’ revenue (cost) in these two settlement mechanisms can be positive or negative depending on the wind power forecast error.

کلیدواژه‌ها [English]

  • Wind power production
  • spatio-temporal correlation
  • Real-time market
  • single- and dual-price settlement mechanisms
[1]      balancing market clearing with pay-as-bid pricing,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1966-1975, Dec. 2013.
[2]      J. M. González, A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno, “Integrating Renewables in Electricity Markets: Operational Problems,” New York, NY, USA:Springer, 2014.
[3]      Q. Wang, Ch. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard, “Review of real-time electricity markets for integrating distributed energy resources and demand response,” Appl. Energy, vol. 138, pp. 695-706, 2015.
[4]      A. Botterud, Z. Zhou, J. Wang, J. Sumaili, H. Keko, J. Mendes, R. J. Bessa, and V. Miranda, “Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: A case study of Illinois,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 250-261, 2013.
[5]      A. Botterud, Z. Zhou, J. Wang, R. J. Bessa, H. Keko, J. Sumaili, and V. Miranda, “Wind power trading under uncertainty in LMP markets,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 894-903, May 2012.
[6]      J. Garcia-Gonzalez, A. S. Roque, F. Campos, and J. Villar, “Connecting the intraday energy and reserve markets by an optimal redispatch,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2220-2231, Nov. 2007.
[7]      M. Amelin, “An evaluation of intraday trading and demand response for a predominantly hydro-wind system under nordic market rules,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 3-12, Jan. 2015.
[8]      A. M. Jafari, H. Zareipour, A. Schellenberg, and N. Amjady, “The value of intra-day markets in power systems with high wind power penetration,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1121-1132, May 2014.
[9]      Market operator of the electricity market of the Iberian Peninsula, OMEL, 2008. [Online]. Available: http://www.omel.es/2014-08-02.
[10]      J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz, “Economic valuation of reserves in power systems with high penetration of wind power,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 900-910, May 2009.
[11]      T. Aigner, S. Jaehnert, G. L. Doorman, and T. Gjengedal, “The effect of large-scale wind power on system balancing in Northern Europe,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 751-759, Oct. 2012.
[12]      S. Surender Reddy, P.R. Bijwe, and A.R. Abhyankar, “Optimal Posturing in Day-Ahead Market Clearing for Uncertainties Considering Anticipated Real-Time Adjustment Costs,” IEEE Systems Journal, vol. 9, no. 1, pp. 177-190, March 2015.
[13]      S. Surender Reddy, P.R. Bijwe, and A.R. Abhyankar, “Optimum day-ahead clearing of energy and reserve markets with wind power generation using anticipated real-time adjustment costs,” in International Journal of Electrical Power & Energy Systems, Washington: Power System Test Case Archive, Univ., vol. 71, pp. 242-253, October 2015.
[14]      S. Martin, Y. Smeers, and J. A. Aguado, “A stochastic two settlement equilibrium model for electricity markets with wind generation,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 233-245, Jan. 2015.
[15]      J. M. Morales, A. J. Conejo, K. Liu, and J. Zhong, “Pricing electricity in pools with wind producers,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1366-1376, Aug. 2012.
[16]      A. L. Ott, “Experience with pjm market operation system design and implementation,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 528-534, May 2003.
[17]      H. Farahmand, T. Aigner, G. L. Doorman, M. Korpas, and D. Huertas-Hernando, “Balancing market integration in the northern european continent: A 2030 case study,” IEEE Trans. on Sustain. Energy, vol. 3, no. 4, pp. 918-930, Oct. 2012.
[18]      T. Aigner, H. Farahmand, and T. Gjengedal, “Modeling the northern European electricity market,” Power and Energy Society General Meeting, 2012 IEEE, pp. 1-8, Jul. 2012.
[19]      S. Rahmani Dabbagh, and M. K Sheikh-El-Eslami, “Risk assessment of virtual power plants offering in energy and reserve markets,” IEEE Trans. Power Syst., vol. 31, pp. 3572 – 3582, Sep. 2016.
[20]      J. P. Chaves-Ávila, R. A. Hakvoort, and A. Ramos, “The impact of European balancing rules on wind power economics and on short-term bidding strategies,” Energy Policy, vol. 68, pp. 383-393, May 2014.
[21]      N. Aparicio, I. MacGill, J. R. Abbad, and H. Beltran, “Comparison of wind energy support policy and electricity market design in Europe the United States and Australia,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 809-818, Oct. 2012.
[22]      A. Helander, H. Holttinen, and J. Paatero, “Impact of wind power on the power system imbalances in Finland,” Renewable Power Generation, IET, vol. 4, no. 1, pp. 75-84, 2010.
[23]      R. Arjmand, and M. Rahimiyan, “Impact of spatio-temporal correlation of wind production on clearing outcomes of a competitive pool market,” Renewable Energy, vol. 86, pp. 216-227, 2016.
[24]      J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz, “Short-term trading for a wind power producer,” IEEE Trans. Power Syst., vol. 25, pp. 554-564, Feb. 2010.
[25]      امیرحسین زارع نیستانک، رحمت‌اله هوشمند و معین پرستگاری، »بهره برداری بهینه از نیروگاه‌های بادی با استفاده از نیروگاه‌های تلمبه‌ای ذخیره‌ای به منظور کاهش عدم قطعیت در عملکرد آنان در بازار برق«، مجله مهندسی برق دانشگاه تبریز، جلد 41، شماره 2، صفحات 51-59، 1391.
[26]      ارسلان نجفی، حمید فلقی و مریم رمضانی، »تصمیم گیری خرید انرژی الکتریکی برای مصرف کنندگان بزرگ در حضور توربین‌های بادی«، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحات 345-356، 1395.
[27]      R. Arjmand, and M. Rahimiyan, “Statistical analysis of a competitive day-ahead market coupled with correlated wind production and electric load,” Applied Energy, vol. 161, pp. 153-167, 2016.
[28]      P. Pinson, Estimation of the Uncertainty in Wind Power Forecasting, PhD thesis, 2006.
[29]      M. Rahimiyan, and L. Baringo, “Strategic bidding for a virtual power plant in the day-ahead and real-time markets: A price-taker robust optimization approach,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2676-2687, Jul. 2016.
[30]      L. X. Wang, “A course in fuzzy system and control,” Englewood Clifts, NJ, USA, Prentice Hall, Aug. 1996.
[31]      C. Grigg, and et al., “The IEEE reliability test system—1996,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010-1018, Aug. 1999.
[32]      National Renewable Energy Laboratory (NREL), Available online at: http://www.nrel.gov/2014-08-02.